

의료기술재평가사업 총괄

최지은 한국보건의료연구원 보건의료연구본부 본부장

연구진 —

담당연구원

신상진 한국보건의료연구원 재평가개발팀 연구위원

부담당연구원

구여정 한국보건의료연구원 재평가사업팀 연구원 노윤미 한국보건의료연구원 재평가사업팀 연구원

주의 —

- 1. 이 보고서는 한국보건의료연구원에서 수행한 의료기술재 평가사업(NECA-R-20-001)의 결과보고서입니다.
- 2. 이 보고서 내용을 신문, 방송, 참고문헌, 세미나 등에 인용할 때에는 반드시 한국보건의료연구원에서 수행한 평가사업의 결과임을 밝혀야 하며, 평가내용 중 문의사항이 있을 경우에는 주관부서에 문의하여 주시기 바랍니다.

차례

요으	문	i
i.	서론	1
	1. 평가배경	1
	2. 평가목적	14
ii.	평가방법	15
	1. 체계적 문헌고찰	15
Ш.	평가결과	20
	1. 문헌선정 결과	20
	1.1 문헌선정 개요	20
	1.2 선택문헌 특성	21
	1.3 비뚤림위험 평가 결과	30
	2. 분석결과: 다초점 인공수정체	35
	2.1 안전성	35
	2.2 효과성	42
	3. 분석결과: 각막굴절수술	76
	3.1 안전성	76
	3.2 효과성	80
IV.	결과요약 및 결론	97
	1. 평가결과 요약	97
	2. 결론	99
٧.	참고문헌	105
VI.	부록	106
	1. 의료기술재평가위원회 ·····	106
	2. 소위원회 ·····	107
	3. 문헌검색현황	108
	4. 비뚤림위험 평가 및 자료추출 양식	110
	5. 최종선택문헌	114

표차례

표 1.1 다초점 인공수정체 국내 허가사항	
표 1.2 조절성 인공수정체 진료비용(2019년) ·····	
표 1.3 조절성 인공수정체별 진료비용	
표 2.1 PICO-TS 세부 내용 ·····	
표 2.2 국내 전자 데이터베이스	
표 2.3 국외 전자 데이터베이스	
표 2.4 문헌의 선택 및 배제 기준	
표 3.1 인공수정체 유형 ·····	
표 3.2 포함문헌특성: IOL (39편) ·····	. 23
표 3.3 포함문헌특성: 각막굴절수술(17편)	
표 3.4 IOL: 시각관련 불편감(비교군 연구) ······	. 35
표 3.5 IOL: 수술관련 합병증(비교군 연구) ······	
표 3.6 IOL: 시각관련 불편감(단일군 연구) ······	. 38
표 3.7 IOL: 수술관련 합병증(단일군 연구) ······	· 40
표 3.8 IOL: 나안시력 요약표 ·····	. 42
표 3.9 IOL: 나안시력(단일군, 원거리) 하위군 분석 ······	. 46
표 3.10 IOL: 나안시력(단일군, 원거리) 메타회귀 분석결과 ······	. 46
표 3.11 IOL: 나안시력(단일군, 중간거리) 하위군 분석 ······	. 51
표 3.12 IOL: 나안시력(단일군, 중간거리) 메타회귀 분석결과 ······	
표 3.13 IOL: 나안시력(단일군, 근거리) 하위군 분석 ······	. 55
표 3.14 IOL: 나안시력(단일군, 근거리) 메타회귀 분석결과 ······	. 55
표 3.15 IOL: 교정시력 요약표 ······	. 59
표 3.16 IOL: 대비감도(단일군 연구) ······	- 68
표 3.17 IOL: 만족도 요약표 ·····	70
표 3.18 IOL: 안경독립성 요약표 ······	
표 3.19 각막굴절수술: 수술관련 합병증(비교군 연구) ·····	. 76
표 3.20 각막굴절수술: 시력관련 불편감(단일군 연구) ·····	. 77
표 3.21 각막굴절수술: 수술관련 합병증(단일군 연구)	79
표 3.22 각막굴절수술: 나안시력 요약표 ·····	. 80
표 3.23 각막굴절수술: 나안시력(단일군, 원거리) 하위군 분석 ······	. 82
표 3.24 각막굴절수술: 나안시력(단일군, 근거리) 하위군 분석 ·····	. 86
표 3.25 각막굴절수술: 교정시력 요약표 ·····	
표 3.26 각막굴절수술: 시술만족도(단일군 연구) ······	
표 3.27 각막굴절수술: 만족도 요약표 ·····	. 92
표 3.28 각막굴절수술: 시술만족도(단일군 연구, 연속형) ·····	
표 3.29 각막굴절수술: 시술만족도(단일군 연구, 범주형)	
표 3.30 각막굴절수술: 시술만족도(범주형 변수)	
표 3.31 각막굴절수술: 안경독립성 요약표	
표 3.32 각막굴절수술: 안경독립성(범주형 변수)	
표 3 33 Schlote (2017) 안경독립성 ····································	

그<mark>림 차례</mark>

그림 1.1 노년시(H524) 건강보험청구내역(2015-2019) ····································	8
그림 1.2 노년백내장(H25) 건강보험청구내역(2015-2019) ····································	9
그림 3.1 문헌검색전략에 따라 평가에 선택된 문헌	···· 20
그림 3.2 비뚤림위험 그래프(RCT): IOL	30
그림 3.3 비뚤림위험에 대한 평가결과요약(RCT): IOL	30
그림 3.4 비뚤림위험 그래프(NRS): IOL	32
그림 3.5 비뚤림위험에 대한 평가결과요약(NRS): IOL ···································	32
그림 3.6 비뚤림위험 그래프(RCT): 각막굴절수술 ·····	33
그림 3.7 비뚤림위험 그래프(NRS): 각막굴절수술 ·····	34
그림 3.8 비뚤림위험에 대한 평가결과요약(NRS): 각막굴절수술 ······	34
그림 3.9 IOL: 교정시력(비교군 연구) ······	36
그림 3.10 IOL: 교정시력(단일군, 원거리) ······	39
그림 3.11 IOL: 나안시력(RCT, 단안) ······	···· 43
그림 3.12 IOL: 나안시력(Non-RCT) ······	44
그림 3.13 IOL: 나안시력(단일군, 원거리) ·······	···· 45
그림 3.14 IOL: 나안시력(단일군, 원거리, 20/20 or better) ····································	47
그림 3.15 IOL: 나안시력(단일군, 원거리, 20/25 or better) ····································	47
그림 3.16 IOL: 나안시력(단일군, 원거리, 20/30 or better) ····································	···· 48
그림 3.17 IOL: 나안시력(단일군, 원거리, 20/32 or better) ····································	···· 48
그림 3.18 IOL: 나안시력(단일군, 원거리, 20/40 or better) ····································	49
그림 3.19 IOL: 나안시력(단일군, 중간거리) ······	50
그림 3.20 IOL: 나안시력(단일군, 중간거리, 20/20 or better) ····································	···· 52
그림 3.21 IOL: 나안시력(단일군, 중간거리, 20/25 or better) ····································	···· 52
그림 3.22 IOL: 나안시력(단일군, 중간거리, 20/30 or better) ····································	53
그림 3.23 IOL: 나안시력(단일군, 중간거리, 20/32 or better) ····································	53
그림 3.24 IOL: 나안시력(단일군, 중간거리, 20/40 or better) ····································	
그림 3.25 IOL: 나안시력(단일군, 근거리) ······	
그림 3.26 IOL: 나안시력(단일군, 근거리, 20/20 or better) ····································	···· 56
그림 3.27 IOL: 나안시력(단일군, 근거리, 20/25 or better) ····································	
그림 3.28 IOL: 나안시력(단일군, 근거리, 20/30 or better) ····································	
그림 3.29 IOL: 나안시력(단일군, 근거리, 20/32 or better) ····································	
그림 3.30 IOL: 나안시력(단일군, 근거리, 20/40 or better) ····································	
그림 3.31 IOL: 교정시력(RCT, 단안) ······	
그림 3.32 IOL: 교정시력(단초점, NRCT) ······	
그림 3.33 IOL: 교정시력(단일군, 중간거리) ······	···· 62
그림 3.34 IOL: 교정시력(단일군, 중간거리, 20/20 or better)	
그림 3.35 IOL: 교정시력(단일군, 중간거리, 20/25 or better)	
그림 3.36 IOL: 교정시력(단일군, 중간거리, 20/32 or better)	64
그림 3 37 IOI: 교정시력(단역구 중간거리 20/40 or better)	64

그림 3.38 IOL: 교정시력(단일군, 근거리) ······	··· 65
그림 3.39 IOL: 교정시력(단일군, 근거리, 20/20 or better) ····································	66
그림 3.40 IOL: 교정시력(단일군, 근거리, 20/25 or better) ····································	66
그림 3.41 IOL: 교정시력(단일군, 근거리, 20/32 or better) ····································	··· 67
그림 3.42 IOL: 교정시력(단일군, 근거리, 20/40 or better) ····································	··· 67
그림 3.43 IOL: 전반적 만족도(단일군 연구) ······	··· 70
그림 3.44 IOL: 시력만족도(단일군 연구) ······	··· 71
그림 3.45 IOL: 동일한 인공수정체 재선택 의향(단일군 연구) ······	··· 72
그림 3.46 IOL: 타인 추천 의향(단일군 연구) ······	··· 72
그림 3.47 IOL: 안경독립성(비교군 연구) ······	··· 73
그림 3.48 IOL: 안경독립성(단일군 연구) ······	··· 74
그림 3.19 IOL: 안경독립성(단일군 연구) ······	··· 74
그림 3.50 각막굴절수술: 교정시력(단일군, 원거리)	··· 78
그림 3.51 각막굴절수술: 나안시력(단일군, 원거리)	···81
그림 3.52 각막굴절수술: 나안시력(단일군, 원거리, 20/20 or better) ····································	··· 82
그림 3.53 각막굴절수술: 나안시력(단일군, 원거리, 20/25 or better) ····································	83
그림 3.54 각막굴절수술: 나안시력(단일군, 원거리, 20/30 or better) ····································	83
그림 3.55 각막굴절수술: 나안시력(단일군, 원거리, 20/32 or better) ····································	83
그림 3.56 각막굴절수술: 나안시력(단일군, 원거리, 20/40 or better) ····································	··· 84
그림 3.57 각막굴절수술: 나안시력(단일군, 중간거리) ·····	··· 84
그림 3.58 각막굴절수술: 나안시력(단일군, 중간거리, 20/20 or better) ····································	85
그림 3.59 각막굴절수술: 나안시력(단일군, 중간거리, 20/25 or better) ····································	··· 85
그림 3.60 각막굴절수술: 나안시력(단일군, 중간거리, 20/32 or better) ····································	··· 85
그림 3.61 각막굴절수술: 나안시력(단일군, 중간거리, 20/40 or better) ····································	
그림 3.62 각막굴절수술: 나안시력(단일군, 근거리)	··· 86
그림 3.63 각막굴절수술: 나안시력(단일군, 근거리, 20/20 or better) ····································	··· 87
그림 3.64 각막굴절수술: 나안시력(단일군, 근거리, 20/25 or better) ····································	··· 87
그림 3.65 각막굴절수술: 나안시력(단일군, 근거리, 20/40 or better) ····································	
그림 3.66 각막굴절수술: 나안시력(단일군, 근거리, Jaeger) ····································	
그림 3.67 각막굴절수술: 교정시력(단일군, 근거리)	
그림 3.68 각막굴절수술: 교정시력(단일군, 근거리, 20/20 or better) ····································	
그림 3.69 각막굴절수술: 교정시력(단일군, 근거리, 20/25 or better) ····································	
그림 3.70 각막굴절수술: 교정시력(단일군, 근거리, J1 or better) ····································	
그림 3.71 각막굴절수술: 전반적 만족도	
그림 3.72 각막굴절수술: 재시술 의향(단일군 연구)	
그림 3.73 각막굴절수술: 안경독립성(단일군 연구)	··· 96

요약문 (국문)

평가 배경

노안교정술은 국민건강보험 요양급여의 기준에 관한 규칙[별표] 비급여 대상 중 안경, 콘택트렌즈 등을 대체하기 위한 시력교정술에 해당한다. 해당 안건은 비급여 의료기술로 국민생활밀착형 의료기술로 노안교정술의 임상적 안전성, 유효성 근거를 국민들에게 제공하는 것을 목적으로 재평가 대상으로 선정되었다. 2020년 제11차 의료기술재평가위원회(2020.11.13.)에서 재평가 계획서 및 소위원회 구성안에 대해 심의를 받아 재평가를 수행하였다.

본 평가의 목적은 국민적 관심을 고려하여 노안교정술에 대한 의학적 정보를 제공하며 이를 바탕으로 노안교정술과 관련한 국민들의 합리적인 선택을 지원하는 것이다.

평가 방법

노안 성인환자에서 다초점 인공수정체를 이용한 노안교정술과 각막굴절수술법을 이용한 노안교정술에 대한 안전성 및 유효성 평가를 위해 체계적 문헌고찰을 수행하였다. 모든 평가방법은 평가목적을 고려하여 "노안교정술 소위원회(이하 '소위원회'라 한다)"의 심의를 거쳐 확정하였다. 소위원회 구성은 안과 3인, 근거기반의학 2인의 전문가 5인으로 구성하였다.

평가의 핵심질문은 "안경, 콘택트렌즈 등을 대체하기 위한 노안교정술(다초점 인공수정체, 각막굴절수술)은 안전하고 효과적인가?"이었고 안전성은 수술 후 시각관련 불편감, 수술 후 원거리 교정시력, 수술관련 합병증을 지표로 하였고, 유효성은 수술 후 시력(나안시력, 교정시력), 대비감도, 수술 만족도, 수술 후 안경독립성을 지표로 평가하였다.

체계적 문헌고찰은 핵심질문을 토대로 국외 3개, 국내 5개 데이터베이스에서 검색하였으며, 문헌 선정과정은 문헌선택 및 배제기준에 따라 2명의 평가자가 독립적으로 수행하고, 의견의 불일치가 있는 경우에는 평가자간 합의를 통해 최종 논문을 결정하였다. 문헌의 비뚤림위험 평가는 무작위배정임상시험연구(RCT)는 Cochrane의 RoB를, 비무작위연구(NRCT)는 RoBANS를 사용하여 평가하였다. 최종 선택된 문헌을 대상으로 2명의 평가자가 독립적으로 평가를 실시하였으며, 의견이 불일치한 경우 평가자간 합의를 통해 일치된 결과를 도출하였다. 본 평가의 주요목적이 대국민 정보 제공으로 권고결정을 수행하지 않았다. 최근 관심이 높은 다초점 인공수정체에 대해서만 대국민정보를 별도 제시하였으며 우선적으로 평가결과를 바탕으로 정보내용을 정리하였으며 이외 다초점 인공수정체와 관련한 주요 질문에 대해 소위원회 논의를 통해 추가하였다.

평가 결과

노안교정술에 대한 임상적 안전성 및 유효성을 평가하기 위한 체계적 문헌고찰에서 다초점 인공수정체 39편, 각막굴절수술 17편 총 56편 문헌을 검토하였다. 각 기술별 안전성 및 유효성의 결과는 다음과 같다.

안전성

다초점 인공수정체

체계적 문헌고찰을 수행한 결과, 다초점 인공수정체의 임상적 안전성을 보고한 30편(비교군 연구 9편, 단일군 연구 21편)을 확인할 수 있었다.

다초점 인공수정체 시술 후 환자들에서 주로 보고되는 시각관련 불편감에는 달무리(Halo), 눈부심(Glare)등이 있었다. 비교군 연구 3편에서 해당 시각 관련 불편감의 발생을 보고하였다. 시술 후 다초점 인공수정체와 단초점 인공수정체간에 원거리교정시력은 유의한 차이가 없었다. 비교군 연구 7편 중 6편에서 다초점 인공수정체 수술 관련 합병증 발생하지 않았다고 보고하였다.

단일군 연구 13편에서 달무리(Halo), 눈부심(Glare), 빛뻗침(Starbursts)등과 같은 시각관련 불편감을 보고하고 있으나 연구마다 발생빈도에 매우 큰 차이가 있었다. 단일군 연구에서도 원거리 교정시력이 단안기준 0.01 LogMAR (95% CI: -0.01, 0.02)으로 안전성 측면에 문제가 없었다. 또한 수술관련 합병증을 보고한 20편의 단일군 연구 중 12편에서 수술 관련 합병증은 발생하지 않았다고 보고하였다. 연구들에서 보고된 수술 관련 합병증에는 후낭혼탁, 염증, 안구건조증 등이 있었다. 후낭혼탁 발생을 보고한 연구(3편)에서 발생빈도는 2.2-5.4%이었으며 후낭혼탁 중증도를 보고한 1편(Vounotrypidis, 2017)의 연구에서는 그 증상(0-4점)이 0.23±0.16점으로 경미한 것으로 보고하였다. 시술 후 안구건조증 발생빈도는 8.8-24.4%이었으며 다초점 인공수정체 시술 후에도 남은 잔여 굴절이상 교정을 위해 각막굴절수술을 받은 환자는 4.4-6.9%이었다.

각막굴절수술

노안교정을 위한 각막굴절수술의 임상적 안전성을 보고한 11편(비교군 연구 2편, 단일군 연구 9편)이었다. 단일군 연구(3편)에서 보고된 시각관련 불편감에는 눈부심(Glare), 달무리(Halo)이 많았으나 해당 증상의 불편함의 강도는 낮은 것으로 보고되었다. 원거리 교정시력은 단안기준 0.00 LogMAR (95% CI:-0.01, 0.01)로 안전성 측면에 문제가 없었다. 비교군 연구 1편에서는 각막굴절수술 후 수술관련 합병증이 발생하지 않았다고 보고하였으며, 단일군 연구 9편 중 2편에서 수술관련 합병증이 발생하지 않았다고 보고하였다. 수술관련 합병증을 보고한 경우 안구건조증(4-85%), 잔여굴절이상으로 인한 재치료(8-23.2%) 등이 많이 보고되는 합병증이었으며 발생빈도는 다초점 인공수정체와 같이 연구마다 차이가 컸다.

유효성

다초점 인공수정체

RCT 연구에서 다초점 인공수정체 시술군에서의 단안기준 중간거리, 근거리 나안시력이 단초점 인공수정체군에 비해 통계적으로 유의하게 좋았다. Non-RCT 연구에서는 단안기준 근거리 나안시력에서만 다초점 인공수정체와 단초점 인공수정체간의 유의한 차이를 확인할 수 있었다. 단일군 연구에서 다초점 인공수정체 시술 후 단안기준 원거리 나안시력 0.08 LogMAR (95% CI: 0.09, 0.09), 중간거리 나안시력 0.15 LogMAR (95% CI: 0.11, 0.18), 근거리 나안시력 0.15 LogMAR (95% CI: 0.11, 0.19)으로 임상적으로 우수한 시력을 보인 것을 확인할 수 있었다. 다만 해당 양적 합성 결과 연구들 간 이질성이 매우 높아 결과 해석시 특별한 주의가 필요하다.

다초점 인공수정체 시술과 관련하여 전반적 만족도를 보고한 단일군 연구들에서의 시술 만족도는 92% (95% CI: 0.88, 0.96)로 확인되었다. 시력 만족도별로는 원거리 88% (95% CI: 0.74, 0.97), 중간거리 87% (95% CI: 0.82, 0.91), 근거리 90% (95% CI: 0.77, 0.98) 수준으로 나타났다. 또한 RCT 1편에서는 다초점 인공수정체 시술로 더 이상 안경을 사용하지 않아도 되는 환자가 단초점 인공수정체군에 비해 통계적으로 유의하게 더 많았다. 단일군 연구에서는 전체적으로 다초점 인공수정체 시술 환자 중 87% (95% CI: 0.82, 0.92)가 더 이상 안경을 사용할 필요가 없었다. 다초점 인공수정체 시술 후 원거리 작업시 96% (95% CI: 0.93, 0.98), 중간거리 작업시 94% (95% CI: 0.87, 0.98), 근거리 작업시 91% (95% CI: 0.82, 0.97) 환자가 더 이상 안경을 사용할 필요가 없었다. 다만 해당 결과 역시 이질성이 높은 상황으로 결과해석시 특별한 주의가 필요하다.

각막굴절수술

각막굴절수술에 대한 단일군 연구에서 보고된 단안기준 시술 후 원거리 나안시력은 0.07 LogMAR (95% CI: 0.04, 0.11), 중간거리 나안시력 -0.03 LogMAR (95% CI: -0.08, 0.02), 근거리 나안시력 0.14 LogMAR (95% CI: 0.10, 0.18)로 수술 후 우수한 시력을 보이는 것을 확인하였다. 다만 해당 결과 역시 이질성이 높아 결과해석시 특별한 주의가 필요하다.

각막굴절수술 만족도를 보고한 3편의 단일군 연구들에서의 만족도는 100점 만점에서 평균 88.6점 (95% CI: 83.4, 93.9)이었으며, 각막굴절수술을 받은 환자 중 75%(95% CI: 0.64, 0.84)가 동일한 각막굴절수술 다시 받을 의향이 있다고 확인되어 각막굴절수술을 이용한 노안교정술 역시 만족도가 좋은 것으로 나타났다. 단일군 연구에서 각막굴절수술 이후 작업시 안경필요성을 보고한 연구들을 합성한 결과 원거리 작업시 95% (95% CI: 0.82, 1.00), 중간거리 작업시 76% (95% CI: 0.63, 0.88), 근거리 작업시 81% (95% CI: 0.66, 0.93)가 더 이상 안경이 필요하지 않은 것으로 확인되었다. 다만 해당 양적합성 결과 이질성이 높은 수준으로 해당 결과해석시 특별한 주의가 필요하다.

결론 및 제언

노안교정술 소위원회는 노안교정을 위한 다초점 인공수정체와 각막굴절수술의 문헌(56편)을 검토한 결과 각 시술의 안전성과 유효성을 다음과 같이 제언하였다.

다초점 인공수정체와 각막굴절수술을 이용한 노안교정술 이후 달무리, 눈부심과 같은 시각관련 불편감을 호소하는 환자가 있었으며, 이외 수술관련 합병증에는 안구건조증 발생 혹은 노안교정술 이후에도 남은 잔여굴절이상으로 추가 교정술을 받은 경우가 보고되었다. 노안교정술 후 발생할 수 있는 시각관련 불편감과 수술관련 합병증은 시술대상자별 개인차가 커 반드시 노안교정술 전 철저한 안과검사를 통해 개개인별로 발생할 수 있는 시각관련 불편감 및 합병증을 최소화할 수 있도록 해야 할 것이다.

노안교정을 위한 다초점 인공수정체, 각막굴절수술을 이용한 노안교정술은 시술 후 나안시력은 임상적으로 우수한 수준이었으며 시술 대상자들에서 시술만족도 역시 높았다. 하지만 연구들 간의 이질성이 매우 높은 상태로 해당 결과를 해석 시 특별한 주의가 필요하다.

또한 노안교정술 소위원회에서는 노안교정술은 의학적 필요성이 높은 시술이기보다는 노안으로 인해 평상시 안경이나 콘택트렌즈 등을 사용하는 불편감을 해결하고 싶은 개인들의 판단 영역으로 판단하였다. 따라서 최근에 국민적 관심이 높은 다초점 인공수정체에 대해 국민들의 합리적인 의료적 선택을 지원하고자 본 평가를 바탕으로 대국민 정보를 별도로 정리하여 제공하였다.

주요어

노안, 다초점 인공수정체, 각막굴절수술

Presbyopia, Multifocal Intraocular Lens, Keratorefractive Surgery

T 서론

1. 평가배경

제10차 의료기술재평가위원회 우선순위 심의를 통해 국민건강보험 요양급여의 기준에 관한 규칙 [별표] 비급여 대상(단순 코골음 증상개선 목적의 코골이 수술 등 15개 항목) 중 안경, 콘택트렌즈 등을 대체하기 위한 시력교정술이 의료기술재평가 안건으로 선정(2020.10.16.)되었다. 해당 안건은 비급여 의료기술로 국민생활밀착형 의료기술로 시력교정술의 임상적 안전성, 유효성 근거를 국민들에게 제공하는 것을 목적으로 하는 것으로 재평가를 시행하는 것으로 하였다.

소위원회 논의를 통해 시력교정술 중 노안교정술을 평가대상으로 선정하였다. 이는 노인인구는 거의 예외없이 노안을 느끼게 되며 고령화가 진행되면서 꾸준히 노안인구는 증가하는 추세이다. 노안을 극복하기 위한 보존적 방법으로는 일반 돋보기 안경, 다초점 안경, 콘택트렌즈 등이 있으나 이는 지속적이지 않으며 도구를 사용해야 하는 번거로움이 있을 수 있다. 이에 비해 노안교정술은 최소한의 침습적 방법으로 큰효과를 누릴 수 있는 매력적인 방법으로 여겨져 최근 관심이 높은 행위이다. 또한 다른 시력교정술에 비해 노안교정술은 의료현장에 도입, 적용된 지 얼마 되지 않아 안정성 및 안전성에 관한 정보에 대해 국민적요구가 있을 것으로 판단하였다.

선택비급여는 진료목적이 미용, 성형, 건강검진 등 치료 이외 목적인 항목으로 일상생활에 지장이 없는 질환의 치료나 신체적 필수 기능개선을 직접 목적으로 하지 않는 진료로서 의료소비자의 선택에 의한 항목이 해당한다. 따라서 본 평가에서는 국민적 관심을 고려하여 노안교정술에 대한 의학적 정보를 제공하며 이를 바탕으로 노안교정술과 관련한 국민들의 합리적인 선택을 지원하고자 한다.

1.1 평가대상의료기술 개요

1.1.1 노안교정술1)

그 동안 안과 영역에서 다양한 노안의 수술적 치료가 개발되었으며 현재 시행중이다. 노안의 수술적 치료는 크게 각막을 이용한 수술과 인공수정체를 이용한 수술로 구분할 수 있다.

1.1.1.1. 각막을 이용한 노안수술

① 모노비전 라식. 라섹

모노비전(Monovision)이란 한쪽 눈은 원거리를 보도록 하고 다른 쪽 눈은 근거리를 보도록 하는 개념을 말하는데, 가장 기본적인 노안수술의 방법이며 이후에 소개되는 다른 노안수술에서도 많이 활용되는 개념이다. 흔히 굴절이상을 교정하기 위해 시행되는 라식이나 라섹 등의 방법으로 주시안²⁾은 정시를 만들어 원거리를 보도록 하고, 비주시안은 근거리를 볼 수 있도록 약간의 근시를 만들어 주는 방법으로 인위적으로 굴절부등을 유도하는 수술법이다.

이러한 방법은 대부분의 경우 일상생활에 불편을 못 느끼지만 양안 시력의 감소, 입체시의 감소, 굴절부등의 적응 실패 등 부작용이 있을 수 있다. 양안의 굴절 부등이 어느 정도가 적당한지에 대해서는 논란의 여지가 있는데, 2.0 디옵터 이하의 비교적 적은 양의 굴절부등이 입체시나 대비감도 면에서 유리하다는 주장과 2.5 디옵터 이상 많은 양의 굴절부등이 적응에 차이가 없으면서 근거리 양안 시력 면에서 유리하다는 주장이 혼재 하고 있다. 사람에 따라 어느 한쪽 눈을 지나치게 우세하게 인지하여 강한 주시 선호를 가지면 단안시에 실패할 수 있다. 단안시 원리에 착안하여 근시 또는 원시를 갖고 있는 환자에서 라식(laser in situ keratomileusis, LASIK; 레이저각막절삭성형술) 또는 라섹(laser epithelial keratomileusis, LASEK; 레이저각막상피절삭성형술)을 이용해 주시 안은 정시로 만들고 비주시안을 근시로 만들면 노안을 개선할 수 있다

비주시안에 약간의 근시를 남기고(-1.5 디옵터) 각막의 광학부 3-6mm 영역을 비구면으로 만들어 미세단안시와 구면수차를 동시에 이용해 초점심도를 증가시키는 방법으로 비구면 미세단안시라식수술(aspheric micro-Monovision LASIK)이라고 한다. 비구면 미세단안시라식수술은 각 눈의 초점심도를 증가시켜 두 눈의 굴절값 차이는 줄이고, 원거리가 잘 보이는 범위와 근거리가 잘 보이는 범위가 겹치는 혼합 영역이 형성되어 중간거리 시력을 향상시킬 수 있다는 장점이 있다. 회사마다 약간의 차이는 있지만 CustomVue VISX (AMO Development, Milpitas, CA, USA)나 Supracor (Technolas Perfect Vision GmbH, Munchen, Germany), 그리고 PresbyMAX (SCHWIND eye-tech-solutions GmbH, Kleinostheim, Germany)가 중심부로 근거리를 보게 만드는 방법을 이용하고, Nidek Advanced Vision (Nidek, Gamagori, Japan)은 주변부로 근거리를 보게 만드는

¹⁾ 박종훈&김명준(2014), 현주(2019), 김은철(2019)을 참고하여 재정리함

²⁾ 우리가 시각 정보를 받아들일 때 두 눈 중에서 주로 의존하게 되는 눈을 주시안 또는 우세안 이라고 하고, 반대쪽의 눈을 비주시안 또는 비우세안이라고 함

방법을 이용한다. Laser Blended Vision (Presbyond, Carl Zeiss Meditec, Jena, Germany)은 비구면 단안시법을 이용한다.

세 가지 방법을 비교하자면 중심부로 근거리를 보는 방법은 좋은 근거리 시력을 보이지만 원거리 시력이 유의하게 저하되는 경향을 보였고, 주변부로 근거리를 보는 방법은 원거리 시력은 좋았지만, 근거리시력 개선 효과는 적었다. 이것은 중심부 각막이 굴절현상의 대부분을 담당하기 때문이라 생각된다. 이에 반해 비구면 미세단안시법은 좋은 근거리와 원거리 시력을 얻으면서도 앞의 두 방법과는 달리 생리학적인 각막 형태를 유지할 수 있어 원거리 시력이 저하되거나 단안시에 적응하지 못하는 환자의 경우 재수술이 가능하여 상대적으로 좋은 안전성을 보였다.

② 고주파각막성형술(Conductive keratoplasty)

고주파각막성형술은 각막에 부분적으로 열을 가하여 각막의 변형을 유발하는 각막열형성술(thermokeratoplasty)의 한 종류로 40세 이상의 대상자에서 원시교정을 목적으로 미국 식품의 약국의 허가를 받은 시술이다. 노안교정 고주파각막성형술은 특수장비를 이용하여 고주파 에너지를 각막 주변부 실질에 전달하여 주변부 각막 실질을 수축시킴으로써 주변부 각막은 편평해지고 중심부 각막곡률을 증가시켜 굴절력을 증가시키는 시술이다. 고주파를 이용하기 때문에 이전에 시행되었던 열이나 이산화탄소레이저를 이용한 방법에 비해 비교적 균등한 콜라겐 수축을 유발하여 안정성이나 재현성이 높은 편이다. 시술 후에는 근시가 발생하여 근거리 시력이 향상되지만, 그와 동시에 난시가 생겨 빛 번집 또는 원거리 시력저하가 생기거나 시간이 지나면서 콜라겐 수축의 효과가 떨어지고 원래 상태로 돌아가려는 리모델링 기전에 의해 퇴행이 일어나는 단점이 있어 최근에는 거의 시행되지 않고 있다.

③ 노안교정 라식, 라섹

노안교정 라식은 앞서 소개한 모노비전 라식수술과 달리 각막 자체가 다초점 구역(Multifocality)을 갖도록 레이저를 조사하는 방식의 수술방법이다. 이러한 노안교정 라식수술은 레이저 조사 방식에 따라 크게 Central presbyLASIK, Peripheral presbyLASIK, Multifocal transitional profile으로 구분 할 수 있다.

- Central presbyLASIK은 여러 곳에 초점이 맺히도록 각막을 절제하는 방법으로 근거리를 볼 수 있는 부분을 중심부에 만들고 주변부는 원거리를 볼 수 있도록 절제하는 방법이다. 이 방법은 각막절삭량이 짧고 적응 시간(neural adaptation)이 짧지만 중심부 각막에 레이저를 조사하는 방식의 특성상 시축과의 정렬(alignment)에 민감하게 영향을 받는 단점이 있다.
- Peripheral presbyLASIK은 중심부는 원거리를 보도록 만들고 주변부는 근거리를 보도록 각막의 형태를 변화시키는 방법으로 각막 주변부의 절삭량이 많아 주로 원시환자에서 시행된다.
- 다초점 전환 프로파일(Multifocal transitional profile) 방식은 마치 다초점 안경처럼 이래쪽 각막을 통해 근거리를 중심부 각막을 통해 원거리를 볼 수 있도록 레이저를 조사하는 방식이다. 이러한 방식은 수직 코마 수차를 크게 유발하여 최근에는 거의 사용되고 있지 않다.

④ 각막인레이(Corneal inlay)

각막 인레이 삽입은 노안교정을 목적으로 각막 내에 인레이라 불리는 매우 얇은 일종의 임플란트를 삽입하는 수술방법을 말한다. 각막인레이는 수술 시 각막 내 조직을 제거하지 않기 때문에 정상 각막층을 그대로 유지할 수 있다. 따라서 수술 후에 염증이 생기거나 환자가 불편해하는 경우 각막에 별다른 손상을 입히지 않고 이를 제거할 수 있다는 장점이 있다. 또한 단안시를 이용한 방법으로 삽입한 눈에서 근거리 시력을 얻을 수 있고, 반대로 원거리 시력은 저하될 수 있기 때문에 비주시안에 시술을 하게 된다.

• 카메라인레이

먼저 핀홀(pin hole) 원리를 이용해서 초점심도(depth of focus)를 증가시키는 카메라인레이(KAMRA Inlay; AcuFocus Inc., Irvine, CA, USA)는 현재 국내에서도 사용 중인 것으로 중심부에 1.6 mm 직경의 구멍을 갖는 3.8 mm 크기의 얇은 필름 같은 구조이다. 동공 크기를 인위적으로 작게 만들어주는 효과를 갖는데 이렇게 핀홀을 만들어주면 마치 카메라의 조리개를 조였을 때처럼 초점 심도가 증가되어 근거리시력의 회복을 도모할 수 있다. 또한 KAMRA 인레이의 주변부에는 약 8,400개의 작은 구멍이 있어서 각막의 산소나 영양소 투과를 가능하게 하여 각막부종이나 기능부전을 예방하고자 하였다. 그러나 그효과가 영구적이지는 않은데, 수술 후 3년에서 5년 사이에는 노화현상에 따른 원시화로 인해 근거리, 중간거리, 원거리 나안시력이 모두 유의하게 감소하여 노안교정 효과가 떨어진다. 카메라인레이는 빛 번집과 밤에 눈부심이 다른 인레이에 비해 더 많이 발생하는데, 이는 불투명한 인레이의 특성으로 망막까지의 빛 도달량이 줄어들고 산소 투과를 위해 만든 미세구멍을 통해 빛이 투과하게 되면서 대비감도가 감소하고 눈부심이 심해지기 때문이다. 또한 빛을 차단하는 재질 때문에 시술 후에 망막 문제가 생겼을 경우 레이저나 수술을 위해서는 인레이를 먼저 제거해야 하는 부담도 있다.

• 하이드로겔인레이

다른 종류의 인레이로 하이드로겔인레이(Raindrop Near Vision Inlay; ReVision Optics, Lake Forest, CA, USA)가 있다. Raindrop 인레이는 빛을 제한하는 핀홀의 원리가 아닌 중심부 각막에 직경 2.0mm의 작고 투명한 인레이를 삽입함으로써 각막의 전면부를 리모델링하여 근거리 시력을 향상 시키도록 디자인되어 있다. 또한 각막의 nutrient flow를 방해하지 않도록 투과성 하이드로겔(permeable hydrogel) 재질로 만들어져 있으며 수분함량이 80%이며, 굴절률(Refractive index)이 사람의 각막과 거의 같도록 디자인 되어있는 특징이 있다. 크기는 2 mm에서 4 mm의 원형으로 초승달 모양의 단면을 가져, 중앙부가 주변부보다 두꺼우며($32~\mu$ m), 각막의 굴절률과 비슷한 굴절률을 가진다. 따라서 실제로 각막에 삽입된 상태에서는 굴절력이 없으나 인레이의 중심부가 주변부보다 두껍기 때문에 각막 중심부 표면을 튀어나오게 만들어 곡률을 증가시켜 근거리 및 중간거리 시력을 개선할 수 있으며 비주시안에 시술한다. 각막 형태를 변화시키기 위해 다른 인레이에 비해 얕은 부위인 $120-200~\mu$ m 깊이의 각막에 삽입하게 된다. 가까운 거리의 사물을 보게 되면 동공이 축소되어 하이드로겔인레이의 기능을 강화시켜 주고, 멀리 있는 사물을 볼 때는 동공이 커지면서 빛이 인레이를 피해 눈 안으로 들어가므로 원거리 시력에는 영향을 주지 않는다.

하이드로겔인레이는 2016년에 US Food and Drug Administration (FDA) 승인을 받았지만, 5년까지 경과관찰을 하도록 하는 FDA의 승인 후 연구에서 하이드로겔인레이를 삽입한 눈의 75%에서 각막 흐림이 관찰되고, 중심각막 혼탁은 42%에서 발생하여, 2018년 10월 Optics Medical사는 리콜을 결정했다. 각막 흐림은 각막의 염증으로 생기는 현상이며, 환자의 시야가 안개 낀 듯 흐려 보이게 한다. 이후 2019년 3월 미국 FDA에서도 하이드로겔인레이 삽입 후 각막 흐림의 위험을 높인다며 이것을 class I 리콜로 분류했다》). 따라서 현재 하이드로겔인레이 삽입술은 국내외에서 시행하지 않고 있으며, 시술 받은 환자는 주의 깊은 경과관찰과 함께 합병증이 발견되면 제거하는 것이 권고되고 있다.

• Flexivue Microlens

이중광학부를 갖는 각막인레이인 Flexivue Microlens (Presbia, Los Angeles, CA, USA)와 Icolens (Neoptics AG, Hunenberg, Switzerland)가 있다. 이것은 친수성 아크릴 소재로 되어 있으며 인레이 중심부에는 굴절력이 없으나 주변부에는 굴절력을 갖도록 디자인 되어 삽입안에 다초점(Multifocality)을 유도한다. 3.2mm의 이중광학부를 갖는 Flexivue Microlens는 중심부(1.6 mm)에는 굴절력이 없어 원거리를 볼 수 있고, 주변부에는 +1.5 디옵터 에서 +3.5 디옵터의 도수를 넣어 근거리를 볼 수 있게 만든 인레이다. 이 인레이는 여러 단계의 도수가 있어 노안의 초기 단계에서 수술했더라도 노안이 진행하면 이후에 인레이를 높은 단계로 교체하여 효과를 유지하는 것도 가능하다.

생체적합한 친수성 아크릴재질로 인레이 중앙에는 0.5 mm의 구멍이 있어 각막 실질의 산소와 영양분이 인레이를 통과해서 지날 수 있도록 설계되었다. Flexivue Microlens는 비주시안에 시술하며, 각막 기질 300 μ m 깊이에 펨토초레이저(femtosecond laser)로 주머니를 만들어 그 안에 이식한다. 2013년 발표된 연구(박종훈, 김명준, 2014)에서 1년 경과관찰 시 근거리 나안시력은 75%에서 20/32 이상으로 호전되었으나 수술한 안구에서 원거리 나안시력은 20/50으로 저하되는 것으로 나타났다. 하지만 원거리 나안시력은 술 전과 차이가 없었으며 대비감도는 다소 떨어지는 것으로 보고되었다.

⑤ 펨토초레이저 각막 실질 원형 절개(intrastromal femtosecond ring incision, INTRACOR)

펨토초레이저 각막 실질 원형 절개는 펨토초레이저를 이용하여 각막 중앙부 실질에 5개의 동심원을 만들어 중심 각막을 가파르게 하여 중심부 각막을 볼록하게 만들어 굴절력을 높이는 방식의 또 다른 노안 교정 수술방법으로 2009년에 소개되었다. 이 방법은 각막 상피나 보우만막을 손상시키지 않고, 레이저로 안쪽의 실질을 조작하는 것이기 때문에 감염이나, 안내수술과 관련한 합병증이 없다는 장점이 있다. 하지만 이것은 정시 또는 원시인 눈에만 시행할 수 있어 근시를 가진 눈에는 시행이 불가능하고, 양안으로 볼 때 근거리 나안시력이 유의하게 개선되는 효과가 있었지만 원거리 시력이 1-2줄 저하되는 단점 혹은 수술 후 -0.3에서 -0.5 디옵터에 이르는 근시화가 되는 부작용이 있다.

³⁾ Class I 리콜은 가장 심각한 형태의 조치로 사용 시 환자의 건강에 중대한 위해를 끼칠 가능성이 있을 때 행해짐

1.1.1.2. 인공수정체를 이용한 노안수술

노안교정술을 고려할 때 환자의 수정체가 깨끗하다면 앞서 기술한 각막을 이용한 노안수술의 여러 방법들을 시행할 수 있으나, 수정체에 임상적으로 무시하지 못할 정도의 백내장이 진행된 상태라면 수정체를 제거하고 노안교정용 인공수정체(Intraocular lens, IOL)를 삽입하는 것을 더욱 적극적으로 고려할 수 있다.

① 굴절성 다초점 인공수정체(Refractive Multifocal IOL)

굴절성 다초점 인공수정체는 인공수정체의 광학부내에 굴절력이 다른 여러 굴절 영역이 존재하여 두 개이상의 초점이 만들어지도록 설계된 것으로 초기에 소개되었던 다초점 인공수정체의 모델들에 많이 적용되었던 디자인이다.

굴절성 다초점 인공수정체인 ReZoom (Abbott Medical Optics, Santa Ana, CA, USA)은 2005년 미국 식품의약국의 허가를 획득한 제품으로 원거리와 근거리를 담당하는 다섯 개의 굴절영역을 갖도록 설계되어 있으며 삼체형 디자인을 채택하였다. 광학적으로 굴절성 다초점 인공수정체는 회절성 다초점 인공수정체에 비하여 인공수정체 광학부가 두 개의 굴절면으로 되어있어 동공의 크기에 따라 이중초점렌즈의 효과 변화가 심하였다. 즉 동공 크기가 줄어들면서 주변부 광학부가 가려지면 이중초점렌즈가 단초점렌즈로 변하기 때문이다. 과거에 사용된 대표적 렌즈로는 Array SA 40N (Allergan), Domiprogressive (Domilens), True Vista (Stortz), Nuvue (IOLAB) 등이 있었다.

최근에 소개된 비대칭적인 독특한 디자인의 구간 굴절성 다초점 인공수정체는 여러 개의 고리로 된 굴절면을 가지고 있어 동공 크기에 다른 다초점 효과변화를 줄일 수 있다. 구간 굴절성 다초점 인공수정체인 LENTIS Mplus (Oculentis GmbH, Berlin, Germany)는 광학부 하측에 근거리를 담당하는 +3.0 디옵터의 영역이 존재한다. 그러나 수술 후 인공수정체의 위치가 편위되면 다초점 효과가 감소하므로 수술 중에 정 위치에 삽입하는 것이 중요하다. 최근에는 근거리와 원거리가 인공 수정체 각각의 구역에 교대로 배치된 Precizon (Ophtec)라는 렌즈가 개발되어 굴절 다초점 인공수정체의 단점이 다소 개선되었다.

② 회절성 다초점 인공수정체(Diffractive Multifocal IOL)

회절성 다초점 인공수정체는 최근 출시되어 사용 중인 다초점 인공수정체에 가장 널리 이용되고 있는 디자인으로 빛의 회절과 간섭 현상을 이용하여 두 개 이상의 초점으로 빛이 나누어지도록 설계되어 있다. 입사광선이 미세 계단 면을 통과하면서 회절현상으로 빛의 파동이 휘어지게 된다. 이런 휘어진 파동들이 간섭현상에 의해 특정 파동은 모여 더 강해지고, 일부 파동은 서로 상쇄 되어 없어지면서 서로 다른 초점을 형성하게 된다. 이러한 회절성 다초점 인공수정체는 굴절성 다초점 인공수정체에 비하여 대비강도가 더 감소하는 경향이 있을 수 있으며 동공의 변화나 인공수정체 중심 이탈 시 영향을 덜 받는 장점이 있다. 근거리와 원거리에 초점을 맺는 이중초점렌즈에는 ReSTOR (Alcon), TECNIS ZMB00 (J&J) 등이 있다. ReSTOR (Alcon Laboratories, Irvine, CA, USA) 다초점 인공수정체는 회절성 다초점 인공수정체로 특징적으로 apodization 개념이 사용되었다. Apodization이라 하여 주변부로 갈수록 계단의 높이가

낮아져 렌즈 표면을 좀 더 평평하게 만든 렌즈도 있다. Apodization에 의해서 근거리 주시 시 축동 되고, 원거리 주시 시 산동 되는 생리적 동공 변화를 최대한 활용하고자 하였으나, 어두운 조명하에서는 근거리 주시 시에도 동공의 크기가 커서 근거리 기능이 상대적으로 떨어질 수 있다는 단점도 있다.

널리 사용되는 또 다른 회절성 다초점 인공수정체로 TECNIS 다초점 인공수정체가 있다. TECNIS 다초점 인공수정체는 apodization이 사용되지 않아 조명에 무관하게 근거리 시기능을 확보할 수 있는 장점이 있으나, 생리적인 동공의 크기 변화를 고려하고 있지는 않다.

최근에는 AT LISA tri (Zeiss), FineVision (PhysIOL), PanOptix (Alcon) 등의 삼중초점렌즈도 널리 쓰이고 있어 요리나 컴퓨터 작업 등의 중간거리 시력향상에 도움을 주고 있다.

③ 조절성 인공수정체(Accommodative IOL)

다초점 인공수정체는 빛을 분할하는 것으로 임상적으로는 상의 선명도가 감소하거나 대비감도 등이 저하될 수 있다. 이러한 단점을 극복하고자 실제 젊은 사람의 눈처럼 조절을 할 수 있는 다양한 기전의 조절성 인공수정체 들이 개발되었다. 광학부의 작동 방식에 따라 single optic, dual optic, curvature changing 등 다양한 시도가 있었으며 근거리 시력 결과가 일정하지 않고 수정체낭이 수축되면서 굴절 이상이 유발되거나 인공수정체 기울어짐이 발생 가능한 점 등의 단점이 있다.

④ 연속초점 인공수정체(Extended Depth of Focus IOL, EDOF IOL)

일반적으로 인공수정체는 외부에서 들어오는 빛을 하나(단초점) 또는 두 개(이중초점), 세 개(삼중초점)로 망막에 맺히게 하는데 반하여, 연속초점 인공수정체 렌즈는 들어오는 빛의 웨이브를 연속적인 경선에 맺히게 한다. 이런 연장된 초점에 의해 기존의 다초점 렌즈에서 보였던 근거리와 원거리의 상이 중첩되는 현상이 사라지게 되어 달무리 현상이 없어진다. 이론적으로 연속초점 인공수정체 렌즈는 단초점이나 다초점 렌즈에 비해 전체의 범위에서 더 나은 광학의 질을 제공할 수 있다.

또 다른 종류인 향상된 초점렌즈가 있는데 이는 small aperture intraocular lenses이다. 이 렌즈는 핀홀로 디자인되어 있어 초점이 맺히지 않는 빛의 유입을 막아서 상의 질을 향상시킬 수 있다. 동공의 크기를 줄이는 것은 단지 중심부로 초점을 맺는 빛이 망막에 도달하고 결국 희미한 전이부가 없이 높은 질의 연속초점이 가능하게 된다.

1.2 노안

우리가 멀리 보거나 가까이 볼 때 사물에 초점을 맞추기 위해서는 눈의 굴절력이 변해야 하는데 안구자체의 모양이나 길이는 변함이 없으므로 눈 안에 있는 수정체의 두께가 변화하면서 굴절력이 변해 초점을 맞추게된다. 이 때 수정체의 두께를 조절하는 섬모체근육도 수축하면서 수정체소대의 장력이 감소하여 수정체가 더욱 볼록해지면서 두꺼워지면서 굴절력이 증가한다. 이 수정체는 볼록렌즈 역할을 하여 멀리서 들어오는 물체의 상을 굴절시켜 망막에 정확한 상을 맺게 하는데 탄성이 있어서 멀리 볼 때는 얇아지고 가까이 볼 때는 두꺼워진다. 이 수정체의 탄력성이 줄어들고 섬모체근육의 수축력도 약해지면서 조절력이 계속 감소하여 근거리(25-40㎝)작업에 어려움이 생기는 경우를 노안이라고 한다(권지원, 2019).

지난 5년 동안 노안으로 건강보험권내에서 진료를 받은 환자는 10만 명 규모로 환자 수는 증가하지 않은 것 대비 요양급여비용총액은 2015년 44억 원(환자 1인당 연평균 37,786원)에서 2019년 54억 원(환자 1인당 연평균 52,767원) 규모로 증가하고 있다.

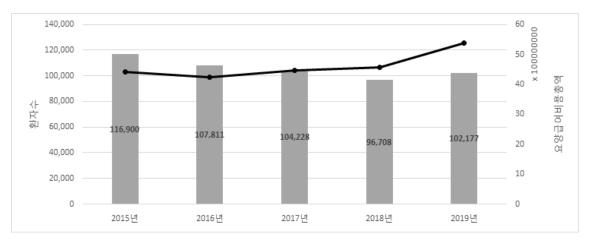


그림 1.1 노년시(H524) 건강보험청구내역(2015-2019)

지난 5년 동안 노년백내장으로 건강보험권내에서 진료를 받은 환자는 2015년 94만 명 수준이던 것이 2019년 118만 명으로 증가하고 있으며 요양급여비용총액은 2015년 3,904억 원(환자 1인당 연평균 416,339원)에서 2019년 6,143억 원(환자 1인당 연평균 520,473원) 규모로 크게 증가하고 있다.

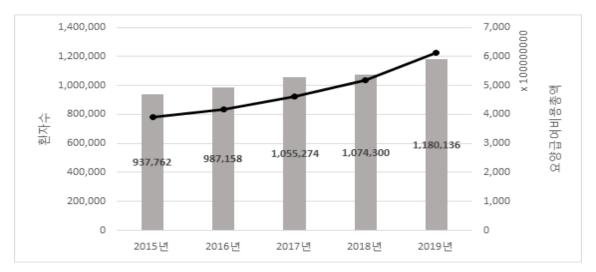


그림 1.2 노년백내장(H25) 건강보험청구내역(2015-2019)

노안과 노년백내장에서 이루어지는 시술은 비급여로 관련 사용량을 파악하기 어려운 상황이지만, 건강보험청구내역을 기준으로 판단할 때 관련 사회적 비용은 매우 클 것으로 예상된다.

1.3 국내외 임상진료지침

NICE guidance 각막인레이(Corneal inlay) 관련 가이드라인(IPG455, 2013)에서는 노안교정을 위한 각막인레이 이식에 대한 근거는 양, 질적인 측면에서 제한적임을 지적하였다. 단기효능에 대한 근거가 있었으나 부작용이 자주 발생한다는 보고도 있었다. 따라서 노안교정을 위해 각막 인레이 시술시 환자에게 해당 시술이 안경, 콘택트렌즈 착용을 대신하는 미용 목적임을 이해하도록 해야 한다고 점을 강조하였다.

NICE guidance 공막확장술(Scleral expansion surgery) 관련 가이드라인(IPG70, 2004)에서는 노안에 대한 공막확장술의 안전성과 효능에 대한 현재까지 근거는 매우 제한적임을 지적하였다. 대부분의 환자에서 효과에 대한 근거가 없으며 시술의 잠재적 위험에 대한 우려가 있으므로 해당 시술을 사용하지 않을 것을 권고하였다.

1.4 체계적 문헌고찰 연구 현황

Cruz 등(2020)은 체계적 문헌고찰을 통해 노안의 한 가지 치료옵션인 다초점 인공수정체 중 삼중초점과 이중초점의 인공수정체를 사용한 삽입의 효과 및 안전성을 평가하였다. 4) 2019년 9월까지 출판된 문헌을 검토하여 총 175명의 참가자를 대상으로 유럽에서 수행된 5편의 연구를 포함하였으며 5개 연구 모두 원거리 나안시력을 일차 결과지표로 평가하였다. 효과는 삼중초점과 이중초점 인공수정체간의 효과차이가 있다고 할 만한 근거가 불충분하였다. 5개의 연구에서 보고된 이상반응은 연구마다 상이하였다. 1편의 연구에서 참가자가 수술 중 수술 후 합병증이 없었다고 보고한 반면 다른 1편의 연구에서는 이중초점 군에서

^{4) 2019.9.26.}까지 문헌검색

4안(11.4%), 삼중초점 군에서 3안(7.5%)이 YAG capsulotomy를 필요로 하는 상당한 후방수정체 혼탁이 발생하였다고 보고하였다.

Kelava 등(2017)은 체계적 문헌고찰을 통해 모노비전(Monovision)과 다초점(Multifocality)을 비교한 RCT 연구를 검토하였다.5) 모노비전(Monofocal lens, LASIK)과 다초점 인공수정체(Multifocal intraocular lens, MFIOLs: Isert Refractive 또는 TECNIS Diffractive)을 비교한 3편, 다른 다초점 인고수정체와 TECNIS를 비교한 6편이 포함되었다. 직접비교에서 pseudophakic Monovision은 백내장에서 Isert(1편(n=75), RR: 0.49, 95% CI: 0.28, 0.80) 및 TECNIS(1편(n=211), RR: 0.36, 95% CI: 0.25, 0.52)보다 열등하였으며, LASIK 굴절 수술에서 TECNIS(1편(n=100, RR: 0.93, 95% CI: 0.78, 1.10)과 비슷하였다. 백내장 환자의 네트워크 메타 회귀(6편, 14개의 비교)에서 pseudophakic Monovision이 TECNIS보다 열등하였다. 간접비교에서 또한 다른 다초점 인공수정체보다 열등하거나(ReZoom Refractive, TwinSet diffractive), 열등한(Array Refractive) 경향이 있었다. LASIK은 굴절 수술에서 TECNIS와 비슷했으며, 간접비교에서 또한 ReZoom 또는 Array Refractive MFIOL보다 우월한 경향이 있었다. 부작용은 평가 및 보고의 이질성으로 인해 합성이 불가능하였다. 한 편의 RCT에서 백내장 환자대상으로 TECNIS에 비해 pseudophakic Monovision에서 눈부심이 적었으며 양안나안시력, 대비감도(Contrast sensitivity)자료는 이질성과 질적 한계가 있었다.

Labiris 등(2017)은 노안교정방법 중 pseudophakic Monovision에 대한 체계적 문헌고찰을 수행하였다. 18편의 기술연구 및 12편의 비교연구가 포함되었으며 이 중 다초점 인공수정체와 pseudophakic Monovision을 비교한 연구가 9편으로 가장 많았다. 포함된 연구들에서 Pseudophakic Monosvision은 안경독립률(spectacles independence)이 높고 부작용이 적은 노안에 효과적인 방법으로 보고하였다(정량적 합성을 하지 않음).

de Silva 등(2016)은 백내장 수술에서 현재 표준 치료인 단초점 인공수정체 수술과 다초점 인공수정체간의 시각적 효과를 평가하기 위해 20편(2,061명, 3,194안)의 문헌을 포함하는 체계적 문헌고찰을 시행하였다. 해당 연구들은 유럽(13편), 중국(3편), 미국(1편), 중동(1편), 인도(1편)에서 수행되었으며 유럽과 미국에서 1개의 다기관 연구가 수행되었다. 대부분의 연구는 다초점 인공수정체와 단초점 인공수정체를 비교하는 연구였으며 2편은 다초점 인공수정체와 Monovision을 비교한 연구였다. 인공수정체의 제조사와 모형은 상당히 다양하였다. 다초점 인공수정체에서 보여진 원거리 시력이 단초점 인공수정체와 다르지 않다고 보고되었다(unaided VA worse than 6/6, RR: 0.96, 95% CI: 0.89, 1.03). 다초점 인공수정체를 시술받은 군에서 더 나은 근거리 시력을 보였다(unaided near VA worse than J3/J4, RR: 0.20, 95% CI: 0.07, 0.58). 하지만 포함된 연구의 비뚤림 위험과 높은 이질성(1²= 93%)으로 인해 불확실성이 높은 근거로 판단하였다. 다초점 인공수정체를 시술받은 환자들이 시술 후 안경에 덜 의존적일 수 있었으나(RR: 0.63, 95% CI: 0.55, 0.73) 이 경우도 높은 이질성(1²= 67%)을 보였다. 단초점 인공수정체에 비해 다초점 인공수정체군에서 시각불편감이 더 많이 보고되었다(Glare, RR: 1.41, 95% CI: 1.03, 1.93; Haloes, RR: 3.58, 95% CI: 1.99, 6.46). 해당 연구에서는 다초점 인공수정체의 효과크기에 대한 불확실성이 있지만 단초점 인공수정체에 비해 근거리 시력을 개선하는데 효과적이라고 보았고 그 개선이 눈부심 및 달무리와 같은 다초점 인공수정체의 부정적인 영향을 넘어서는 정도인지는 사람마다 다르다고 결론을 제시하였다.

^{5) 2016.11.21.}까지 문헌검색

결국 안경을 더 이상 쓰지 않으려는 환자의 동기가 다초점 인공수정체의 결정요인이 될 것으로 보았다.

1.5 기존 의료기술평가

노안교정술에 대한 의료기술평가는 확인할 수 없었다.

1.6 국내 사용현황

1.6.1 소요장비 국내 허가사항

국내 식약처 허가된 다초점 인공수정체 목록은 아래 표와 같다.

표 1.1 다초점 인공수정체 국내 허가사항

업소명	품목허가번호	제품명	모델명
	수허 21-63 호	AcrySof IQ Vivity Toric	DFT315외 2건
	수허 21-138 호	클라레온 팬옵틱스	Clareon PanOptix Trifocal IOL (CNWTT0)외 1건
	수허 20-178 호	AcrySof IQ Vivity Extended Vision IOL	DFT015
한국알콘(주)	수허 18-203 호	AcrySof™ IQ PanOptix™ Toric Trifocal IOL	TFNT20외 4건
	수허 17-173 호	AcrySof™ IQ PanOptix™ Trifocal IOL	TFNT00
	수허 11-1283호		AcrySof IQ Toric IOL Model SN6AT6외 3건
	수허 11-1128호		AcrySof IQ Toric IOL Models SN6AT3외 3건
	수허 21-54호	TECNIS Symfony OptiBlue Extended Range of Vision IOL	ZXR00V
	수허 21-59호	TECNIS Symfony Toric II OptiBlue Extended Range of Vision IOL	ZXW150외 3건
	수허 20-238호	TECNIS Synergy OptiBlue IOL	ZFR00V
	수허 20-237호	TECNIS Synergy Toric II OptiBlue IOL	ZFW100외 7건
	수허 20-208호	TECNIS Eyhance Toric II IOL	ICU100외 9건
에이엠	수허 19-399호	TECNIS Eyhance IOL	ICB00
오아시아리미티드	수허 16-241호	TECNIS SYMFONY Extended Range of Vision IOL, TECNIS Symfony Plus Extended Range of Vision IOL	ZXR00외 1건
	수허 16-240호	TECNIS SYMFONY Toric Extended Range of Vision IOL, TECNIS Symfony Plus Toric Extended Range of Vision IOL	ZXT100외 16건
	수허 13-294호	TECNIS Multifocal Toric 1-Piece IOL	ZMT150외 3건
	수허 11-421호	TECNIS Multifocal IOL	ZMB00외 2건
서광크리스탈	수허 21-5호	ARTIS Symbiose Plus	ARTIS Symbiose Plus

업소명	품목허가번호	제품명	모델명
유한책임회사	수허 19-5호	ARTIS PL M	ARTIS PL M
=니그이데/ㅈ\	수허 19-373호	PRECIZON Presbyopic Toric	575
한국옵텍(주)	수허 16-412호	Precizon Presbyopic	570A0외 1건
	수허 19-337호	FINE EDOF	POD L GF
(조)이저ㅂ이에 사	수허 18-320호	FineVisionHP	POD F GF
(주)우전브이에스	수허 16-216호	FineVision Toric	POD FT
	수허 15-899호	FineVision	POD F
	수허 19-169호		AT LARA toric 929M외 1건
	수허 18-154호		AT LARA 829MP
칼자이스(주)	수허 17-436호		AT LISA tri toric 939M외 1건
	수허 14-802호		AT LISA tri 839MP
	수허 09-1332호		AT LISA 809M
	수허 18-324호	LUCIDIS IOL	LUCIDIS 108M외 1건
(주)기산과학	수허 17-414호	Mini WELL Ready	Z7560CZ
	수허 16-656호	InFo IOL	EDEN 108M
	수허 16-360호		FIL 611PVT
이영레이너(주)	수허 16-359호		FIL 611PV
	수허 16-358호		FIL 611T
	수허 14-2360호		LU-313 MF30T외 9건
(주)아라케어	수허 14-2359호		LU-313 T외 6건
	수허 11-1507호		LENTIS Mplus LS-312 MF외 8건
	수허 13-3515호		SeeLens MF외 1건
에치디코퍼레이션(유)	수허 21-155 호	INTENSITY	INTENSITY BN외 1건
	수허 14-3014호		VisTor외 1건
(주)비젼포커스	수허 19-357호		RayOne Trifocal (RAO603F)
(주)우전메디칼	수허 21-161호		ISOPURE외 1건
(주)평생동반자우리	수허 17-162호	TriDIFF, iDIFF Plus, PDIFF Plus	iDiff-P외 5건
(주)메디헬프라인	수허 16-353호	Liberty® Trifocal	677MY
(주)미주아이테크	수허 20-245호		SeeLens MF외 1건
두아이메디칼	수허 15-589호		SBL-3외 1건
(주)성우메디칼	수허 19-261호	Aurovue Dfine preloaded IOL	HP760AD3
(주)신한아이텍	수허 11-794호		Optivis

출처: https://emed.mfds.go.kr/#!CECAB01F010, 품목명: 다초점 인공수정체, 취하품목제외

다초점 인공수정체는 전량 수입에 의존(미국, 독일)하고 있는 실정으로 수입 증가율이 전체 의료기기 중 가장 높은 것으로 나타났으며 이는 백내장 수술환자가 지속적으로 증가하는 등 사회 고령화에 따른 영향이 반영된 것으로 보인다. 다초점 인공수정체는 2017년 276억 원 규모에서 2019년 1,046억 원 규모로 증가하고 있다(식품의약품안전처 보도자료, 2020).

1.6.2 국내 사용현황

안경, 콘택트렌즈 등을 대체하기 위한 노안교정술은 국민건강보험 요양급여의 기준에 관한 규칙 〈별표 2〉에 해당하는 비급여대상(제9조제1항관련)항목으로 신체의 필수기능개선 목적이 아닌 경우로 비급여대상 항목이다.

건강보험심사평가원에서 공개한 시력교정술료-레이저각막절삭성형술(라식)의 진료비는 양측기준 평균 2,273,796원 (최저 100만 원-최고 450만 원)이며, 레이저각막상피절삭성형술(라섹)은 평균 1,749,751원 (최저 50만원-최고 350만원)으로 노안교정술에서도 이 정도 수준의 가격일 것으로 예상된다.

백내장 수술 시 수정체를 대신하여 사용하는 조절성 인공수정체6의 중간금액은 한쪽 눈 기준으로 192~250만 원이며, 최고금액은 500만 원으로 최저·최고 간 4배정도의 격차를 보였다(건강보험심사평가원 보도자료, 2019).

표 1.2 조절성 인공수정체 진료비용(2019년)

78	HO즈H			진료비용		
구분	병원종별	최저금액@	최고금액⑥	중간금액	평균금액	b/a
조절성	상급종합	62만5,000	253만2,500	192만	188만3,304	4.1
인공수정체	종합병원	70만	300만	199만8,000	200만1,960	4.3
(24항목)*	병원	120만	500만	250만	254만6,745	4.2

^{*} 조절성 인공수정체 24항목을 분석

조절성 인공수정체별 TECNIS Multi-focal 1-Piece IOL, LENTIS Mplus & COMFORT (LS-313 MF)가 최저·최고 간 가격격차가 컸으며 Miniwell Ready, Acriva Reviol BB Toric가 가격격차가 적었다. TECNIS Symfony Extended Range of Vision IOL, TECNIS Symfony plus Extended Range of Vision IOL, AcrySof IQ RESTOR IOL, TECNIS Multi-focal 1-Piece IOL, AcrySof IQ PanOptix Presbyopia-Correcting IOL가 국내 의료기관에서 많이 사용되는 인공수정체로 판단된다.

⁶⁾ 심평원에서는 노안을 조절한다는 개념으로 다초점 인공수정체를 조절성 인공수정체라는 단어로 사용함

표 1.3 조절성 인공수정체별 진료비용

인공수정체명	최저금액@	최고금액⑥	b/a	제출기관
ACRIVA REVIOL BB TORIC	2,268,000	2,860,000	1.3	2개
ACRIVA REVIOL BB, ACRIVA REVIOL TRI-ED, ACRIVA TRINOVA	1,998,000	2,760,000	1.4	7개
ACRYSOF IQ PANOPTIX PRESBYOPIA-CORRECTING IOL	1,687,950	4,810,950	2.9	64개
ACRYSOF IQ PANOPTIX TORIC PRESBYOPIA CORRECTING IOLS	2,000,000	5,810,950	2.9	40개
ACRYSOF IQ RESTOR IOL	1,000,000	4,300,000	4.3	72개
ACRYSOF IQ RESTOR MULTIFOCAL TORIC IOL	1,597,200	4,300,000	2.7	50개
AT LARA 829MP	1,000,000	3,450,000	3.5	6개
AT LISA 839MP	1,210,000	4,810,950	4.0	42개
AT LISA TRI TORIC 939M(P)	2,200,000	5,810,950	2.6	22개
AT. LISA 809M	1,298,000	2,360,000	1.8	18개
BI-FLEX M(677MY)	1,300,000	2,000,000	1.5	4개
FIL 611PV	1,000,000	1,800,000	1.8	2개
FINEVISION TORIC, POD FT	2,000,000	5,810,950	2.9	27개
FINEVISION, POD F	1,820,500	4,810,950	2.6	31개
HANITA MF IOL(SEELENS MF, BUNNYLENS MF)	1,800,000	4,300,000	2.4	2개
INFO IOL	1,806,500	4,163,480	2.3	3개
LENTIS MPLUS & COMFORT(LS-313 MF)	750,000	4,300,000	5.7	43개
MINIWELL READY	1,595,000	1,900,000	1.2	2개
PRECIZON PRESBYOPIC	1,200,000	4,810,950	4.0	11개
SBL-3	1,000,000	1,866,000	1.9	3개
TECNIS MULTI-FOCAL 1-PIECE INTRAOCULAR LENSE(IOL)	734,400	4,300,000	5.9	66개
TECNIS SYMFONY EXTENDED RANGE OF VISION IOL, TECNIS SYMFONY PLUS EXTENDED RANGE OF VISION IOL	1,200,000	4,300,000	3.6	77711
다초점 인공수정체	1,300,000	4,300,000	3.3	20개

출처: 건강보험심사평가원 비급여진료비정보(접속일: 2021.2.1.)

http://www.hira.or.kr/re/diag/getNewDiagNondeductibleYadmList.do?pgmid=HIRAA030009000000 미제출(6종): IDIFF PLUS, ALSIOL 3D TORIC, OPTIVIS, ALSIOL 3D, FIL 611PVT, ACRIVA REVIOL

2. 평가목적

본 평가에서는 최근 국민적 관심을 고려하여 노안교정술에 대한 유효성, 안전성을 평가하여 관련 의학적 정보를 국민에게 제공하며 이를 바탕으로 노안교정술과 관련한 국민들의 합리적인 선택을 지원하고자 수행한다.

1. 체계적 문헌고찰

1.1 개요

체계적 문헌고찰을 통해 노안교정술의 임상적 안전성, 유효성에 대한 근거를 평가하고자 한다.

1.2 핵심질문

체계적 문헌고찰은 핵심질문을 작성하고 이에 따른 요소를 명확히 규명한 모형을 바탕으로 수행하였다. 본 평가와 관련한 핵심질문은 다음과 같다.

• 안경, 콘택트렌즈 등을 대체하기 위한 노안교정술(다초점 인공수정체, 각막굴절수술)은 안전하고 효과적인가?

문헌검색에 사용된 검색어는 각 구성요소인 PICOTS-SD(patients, interventions, comparisons, outcomes, time, setting, study design)에 따른 세부사항은 〈표 2.1〉과 같다.

표 2.1 PICO-TS 세부 내용

구분	세부내용
Patients (대상 환자)	성인 노안환자(Presbyopia)
Intervention (중재법)	노안교정술 • 다초점 인공수정체(Bifocal, Trifocal, EDOF IOL)를 이용한 수술요법 • 각막굴절수술: 노안교정 라식, 라섹 포함
Comparator (비교법)	제한하지 않음
Outcomes (결과변수)	임상적 안전성 시력관련 불편감 원거리 교정시력 수술관련 합병증 임상적 유효성 시력(Visual acuity): 나안시력, 교정시력 대비감도(Contrast Sensitivity) 만족도(Satisfaction) 안경독립성(Spectacle Independence)
Time (추적기간)	다초점 인공수정체 수술, 각막굴절수술 후 1개월 이후 시점의 결과보고
Study type (연구유형)	전향적 연구로 제한
연도 제한	2010년 이후 출판된 문헌으로 제한

1.3 문헌검색

1.3.1 국내

국내 문헌검색은 5개의 핵심 전자 데이터베이스인 KoreaMed, 한국의학논문데이터베이스(KMbase), 한국학술정보(KISS), 한국교육학술정보원(RISS), 한국과학기술정보연구원(NDSL)을 이용하였다. 검색전략은 국외 검색 시 사용한 검색전략을 기본으로 하되 논리연산자, 절단검색 등이 지원되지 않는데이터베이스의 경우 이를 적절히 수정, 간소화하여 사용하였으며 각 데이터베이스의 특성에 맞추어 영문 및 국문을 혼용하였다(표 2.2).

16

표 2.2 국내 전자 데이터베이스

국내 문헌 검색원	URL 주소
KoreaMed	http://www.koreamed.org/
의학논문데이터베이스검색(KMBASE)	http://kmbase.medric.or.kr/
학술데이터베이스검색(KISS)	http://kiss.kstudy.com/
한국교육학술정보원(RISS)	http://www.riss.kr/
과학기술정보통합서비스	http://www.ndsl.kr/

1.3.2 국외

국외 데이터베이스는 Ovid-Medline, Ovid-EMBASE, Cochrane CENTRAL을 이용하여 체계적 문헌고찰 시 주요 검색원으로 고려되는 데이터베이스를 포함한다(표 2.3). 검색어는 Ovid- Medline에서 사용된 검색어를 기본으로 각 자료원의 특성에 맞게 수정하였으며 MeSH term, 논리연산자, 절단 검색 등의 검색기능을 적절히 활용하였다. 구체적인 검색전략 및 검색결과는 [부록 3]에 제시하였다.

표 2.3 국외 전자 데이터베이스

국내 문헌 검색원	URL 주소
Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations and Ovid MEDLINE(R)	http://ovidsp.tx.ovid.com
Ovid EMBASE	http://ovidsp.tx.ovid.com
Cochrane Central Register of Controlled Trials	http://www.thecochranelibrary.com

1.3.3 검색 기간 및 출판 언어

검색기간과 출판 언어는 제한하지 않았다.

1.4 문헌선정

문헌선택은 검색된 모든 문헌들에 대해 세 명의 검토자가 독립적으로 수행하였다. 1차 선택·배제 과정에서는 제목과 초록을 검토하여 본 평가의 주제와 관련성이 없다고 판단되는 문헌은 배제하고, 2차 선택·배제 과정에서는 초록에서 명확하지 않은 문헌의 전문을 검토하여 사전에 정한 문헌 선정기준에 맞는 문헌을 선택하였다. 의견 불일치가 있을 경우 소위원회를 통해 의견일치를 이루도록 하였다. 구체적인 문헌의 선택 및 배제 기준은 〈표 2.4〉와 같다.

표 2.4 문헌의 선택 및 배제 기준

선택기준(inclusion criteria)	배제기준(exclusion criteria)
노안교정술(표 2.1 기준)에 대한 연구 사전에 정의한 결과지표(5가지)가 한 가지 이상 보고 된 연구	 특정 환자군(백내장없이 Pre-presbyopia 환자에서 IOL 시술, 다른 안과질환자, 노안교정재시술자) 대상연구 제외 중재시술(공막확장술, 고주파각막성형술, 각막인레이, Intracor, Monovision, Diffractive, Refractive, EDOF 가 아닌 IOL, 기타시술(ICL, SCSIs 등))이 적절하지 않은 연구 비교군(제외 중재시술, IOL과 각막굴절수술간 비교, IOL 상품간 비교)이 적절하지 않은 연구 인간 대상 연구가 아닌 경우(동물연구 또는 전임상연구) 원저가 아닌 연구(종설, letter, comment 등) 회색문헌(초록만 발표된 연구, 학위논문, 기관보고서 등 peer-review를 거치지 않은 경우) 한국어 또는 영어로 출판되지 않은 문헌 중복 출판된 문헌: 대상자가 중복되고, 보고된 결과지표도
	동일한 연구 • 증례연구 • 원문 확보 불가

1.5 비뚤림위험 평가

본 평가에서는 두 명 이상의 평가자가 독립적으로 비뚤림위험 평가를 시행하였으며 이 때 무작위배정임상시험(RCT)의 질평가는 Cochrane의 Risk of Bias (RoB)를 사용하였으며 비무작위연구(Non-randomized studies) 문헌은 Risk of Bias for Nonrandomized Studies (RoBANS Ver.2)를 사용하였다. 두 도구의 구체적인 평가항목은 부록 4와 같다.

RoB는 총 7개 문항으로 이루어졌으며, 각 문항에 대해 'low/high/unclear'의 3가지 형태로 평가된다. 문항은 적절한 순서생성 방법을 사용했는지, 배정 은폐가 적절했는지, 눈가림이 잘 수행되었는지, 결측치 등의 처리가 적절했는지, 선택적 결과보고는 없었는지와 기타 비뚤림 항목에서는 민간기업의 연구비 재원 출처를 확인하였다.

RoBANS는 비뚤림 유형에 따른 주요 평가 항목을 규정하여 무작위배정임상시험 이외의 비무작위연구에 적용할 수 있는 비뚤림위험 평가 도구로 개발되었으며 총 8개 세부문항으로 이루어져 있고, 각 문항에 대해 '낮음/높음/불확실'의 3가지 형태로 평가된다. 이외 기타 비뚤림 항목으로 민간기업 연구비 재원 출처를 추가하여 9개 영역에 대해 평가하였다.

1.6 자료추출

사전에 정해진 자료추출 서식을 활용하여 두 명의 평가자가 독립적으로 자료추출을 수행하였다. 한 명의 평가자가 우선적으로 자료추출 양식에 따라 문헌을 정리한 후 다른 한 명의 평가자가 추출된 결과를 독립적으로 검토하고, 두 평가자가 의견합의를 이루어 완성하였다.

주요 자료주출 내용에는 연구설계, 연구대상, 수행시술, 안전성 결과, 유효성 결과 등을 포함하였으며, 자료추출양식은 평가자가 초안을 작성한 후, 소위원회를 통하여 최종 확정하였다.

1.7 자료합성

자료분석은 양적 분석(quantitative analysis)이 가능할 경우 양적 분석(메타분석)을 수행하며, 불가능할 경우 질적 검토(qualitative review) 방법을 적용하였다.

메타분석 수행 시 노안교정술의 효과와 안전성 측면에서 개인차가 커 기본적으로 변량효과모형(random effect model)을 사용하였다. 메타분석 효과추정치는 이분형 변수에서는 상대위험도(relative risk ratio, RR)를 이용하였으며, 연속형 변수에서는 표준화평균차이(standardized mean difference, SMD)로 분석하였다. 단일군 연구에서 시술후 보고된 결과값을 기준으로 합성하였다. 이 때 연속형 변수에서는 표준오차(standard error)를 산출하여 자료를 합성하였으며 이분형 변수는 표본수와 사건수를 이용하여 비율을 기준으로 하였다.

나안시력 및 교정시력에서 연속형 결과변수는 LogMAR 시력척도를 기준으로 합성하였으며, 범주형 결과변수는 스넬렌(Snellen) 시력척도를 기준으로 합성하였다. LogMAR 이외 다른 시력척도(예, Decimal)로 보고된 값은 시력전환공식(Khoshnood 등, 2010)을 이용하여 전환하여 사용하였다.

메타분석 시, 이질성(heterogeneity)에 대한 판단은 우선 시각적으로 숲그림(forest plot)을 확인하고 Cochrane Q statistic(p $\langle 0.10 \$ 일 경우를 통계적 유의성 판단기준으로 간주)과 I^2 statistic을 사용하여 문헌 간 통계적 이질성을 판단하였다. I^2 통계량 40% 이상일 경우를 실제적으로 이질성이 있다고 간주할 수 있으므로(Higgins et al., 2008) 동 평가에서는 이를 기준으로 문헌 간 통계적 이질성을 판단하였다.

통계적 분석은 STATA 14.0/SE와 R version 4.0.5를 이용하며, 군간 효과 차이의 통계적 유의성은 유의수준 5%에서 판단하였다.

1.8 대국민 정보 제공

본 평가에서 수행한 체계적 문헌고찰 결과를 바탕으로 노안교정술에 대해 대국민 정보를 제공하고자하였다. 이 때 평가대상 다초점 인공수정체, 각막굴절수술을 이용한 노안교정술 중 최근 국민적 관심이 높은 다초점 인공수정체를 이용한 노안교정술에 대해서만 대국민 정보를 기술하였다.

1. 문헌선정 결과

1.1. 문헌선정 개요

평가주제와 관련된 문헌을 찾기 위해 국내외 전자데이터베이스를 사용하여 검색된 문헌은 총 6,742건 이었으며 각 데이터베이스에서 중복 검색된 2,669건을 제외한 4,073건이 문헌선택과정에 사용되었다.

중복 제거 후 문헌은 제목 및 초록을 검토하여 평가주제와 연관 있는 283건의 문헌을 1차적으로 선별하였으며, 해당 문헌의 원문을 검토한 후 문헌선택기준에 따른 선택과정을 거쳐 총 56편의 문헌을 선택하였다(IOL 39편, 각막굴절수술 17편). 본 평가의 최종 문헌선정 흐름도는 배제사유를 포함하여 〈그림 3.1〉에 자세히 기술하였으며, 최종 선택문헌 목록은 출판연도 순으로 [부록 5]에 자세히 기술하였다. 본 과정에서 배제된 문헌은 별첨에 기술하였다.

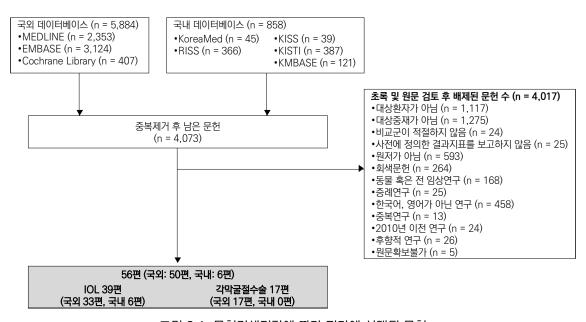


그림 3.1 문헌검색전략에 따라 평가에 선택된 문헌

1.2. 선택문헌 특성

1.2.1. 다초점 인공수정체(39편)

노안교정을 위해 다초점 인공수정체에 관한 연구는 39편이 선정되었다. 이 중 무작위배정임상시험은 4편이었으며 이 중 2편(Monaco, 2017; Alio, 2011)은 다초점 인공수정체와 단초점 인공수정체를 비교하였으며 Gundensen (2016)은 삼중초점과 이중초점 인공수정체간의 비교를 시행한 연구였다. 비무작위연구는 9편으로 단초점 인공수정체와 비교한 연구는 3편(Pedrotti, 2017; Song, 2020; Plaza-Puche, 2016)이었으며, Van Der Linden (2012)는 회절형과 굴절형 이중초점 인공수정체간 비교를 시행하였다. 단일군 연구가 27편이었으며 이중 회절형 삼중초점 인공수정체에 대한 연구가 11편, 회절형 삼중초점 인공수정체 10편으로 많은 비중을 차지하였다. 평가에 포함된 문헌 39편에 포함된 인공수정체의 제조사와 모델은 상당히 다양하였으며, 문헌에서 포함된 인공수정체의 분류는 〈표 3.1〉와 같다.

표 3.1 인공수정체 유형

		Diffractive	Refractive	Other
Monofocal	non- toric			SN60WF (Acrysof) Acri.Smart 48S TECNIS 1-piece Lentis L-313
Bifocal	non- toric	AcrySof ReSTOR SN6AD3 AcrySof ReSTOR SN6AD1 AcrySof ReSTOR D1 AcrySof IQ ReSTOR IOL SN60D3 AcrySof Natural ReSTOR IOL SN60D3 ReSTOR +2.50 Acri.LISA 366D TECNIS ZMB00 447D IOL Acri.Twin	 Rezoom LENTIS Mplus X LS-313 LENTIS Mplus LS-312 LENTIS-313MF15 LENTIS-313MF30 SBL-3 	OptiVis
	toric	ReSTOR SND1T TECNIS ZMT IOL(ZMT150, ZMT225, ZMT300, ZMT400)	Lentis Mplus Toric LU-313 MFT	
Trifocal	non- toric	AcrySof IQ PanOptix TFNT00 Acrysof IQ PanOptix AT LISA tri 839MP FineVision FineVision Pod F FineVision Micro F	Precizon Presbyopic IOL NVA model 570	
	toric	FineVision Toric AcrySof IQ PanOptixTFNT20-60 AT LISA Toric 939 MP		
EDOF	non- toric	TECNIS Symfony ZXR00	LENTIS comfort LS-313 MF15	
LDOI	toric	TECNIS Symfony Toric	LENTIS Comfort LS-313 MF	

39편의 연구들의 시행국가를 살펴보면 단일국가 연구 36편으로 이중 스페인 8편, 독일 6편, 한국 5편, 이탈리아 3편 등이었다. 백내장 치료목적(17편)이 아닌 노안교정목적으로 다초점 인공수정체 삽입을 시행한 연구는 13편, 백내장 환자와 노안교정 환자가 혼합된 경우 10편이었다. 대상환자수는 10명-203명의 규모였으며 시술 후 추적관찰은 대부분의 연구가 3-6개월(범위: 2-26개월) 사이에 이루어졌다.

1.2.2. 각막굴절수술 (17편)

노안교정을 위한 각막굴절수술의 최종 선택문헌은 17편으로 이 중 1편(Khalifa, 2011)은 무작위 배정임상시험이었으며 나머지 16편은 모두 전향적 비무작위연구이었다. 이중 4편(Kohnen, 2020; Taneri, 2019; Soler Tomas, 2015; Oh, 2013)은 비교군이 존재하는 연구였다. 연구가 수행된 국가들을 살펴보면 독일 3편, 중국 3편, 스페인 2편, 스위스 2편 이외 한국, 프랑스, 터키, 아일랜드, 캐나다, 이집트 등에서 각 1편씩이다. 선정문헌은 모두 노안환자(평균연령: 43.4세~59세)를 대상으로 하였으며 연구대상자수는 4명(8안)~68명(123안) 수준으로 비교적 소규모연구들의 비중이 높았다. 해당 연구들에서는 PresbyMAX, SUPRACOR 등 각막을 다초점으로 교정하는 각막굴절수술이 대상중재로 포함되었으며, 해당 시술의 유효성(시력, 대비감도, 만족도, 안경독립성), 안전성(합병증)에 대한 결과를 시술 후 3개월~2년까지의 보고하고 있다.

표 3.2 포함문헌특성: IOL (39편)

			~-					-	환자특	성								결과변수	최대추적
no.	1저자	연구	연구 국가 (기관수)	대상자		연구	구대상기	다 수(명	!(안))		7	기저특성		중재군1	중재군2	중재군3	중재군4	(1.VA, 2.CS, 3.Satisfaction.	최내수식 관찰기간
	(연도)	설계			총	중재군 1	중재군 2	중재군 3	중재군 4	탈락률 (%)	평균 연령	남성 (%)	양안 시술 (Y/N)	(렌즈명)	(렌즈명)	(렌즈명)	(렌즈명)	4.Independence, 5.Complication)	Te/IC
1. R	CT (3편)		I	T				Ι				Ι		D:((.:		1	I	I	
323	Gundersen (2016)	RCT	노르웨이 (1)	Cataract surgery	22	11	11				62.1 70.2	45%	Y	Diffractive Trifocal Toric IOL (FineVisio; FineVision Toric)	Diffractive Bifocal Toric IOL (ReSTOR SND1T)			1, 4, 5	3개월
365	Monaco (2017)	RCT	이탈리아 (1)	Cataract surgery	60 (120)	20 (40)	20 (40)	20 (40)		21 %	66 67 68	53%	Y	Diffractive Trifocal IOL (Acrysof IQ PanOptix TFNT00)	Diffractive EDOF IOL (TECNIS® Symfony ZXR00)	Monofocal IOL (SN60WF (Acrysof))		1, 4, 5	4개월
391	Alio (2011)	RCT	오스트리아, 스페인 (2)	Presbyopia	152 (304)	(78)	(84)	(70)	(72)	0%	71.3	NA	N	Apodized Diffractive multifocal IOL (AcrySof ReSTOR SN6AD3)	Diffractive Bifocal IOL (Acri.LISA 366D)	Refractive Multifocal (Rezoom)	Monofocal IOL (Acri.Smart 48S)	1	6개월
2. N	RS, 비교연-	구 (9편)	,							•									
272	Pedrotti (2017)	전향적, NRS	이탈리아 (1)	Cataract surgery	42	21	21			0%	64.9 66.1	45%	Y	Refractive EDOF Toric IOL (LENTIS Comfort LS-313 MF)	Monofocal IOL (TECNIS 1-piece)			1, 2, 5	12개월
198 _ 국 내	박율리 (2018)	전향적, NRS	한국 (1)	백내장수술	21 (40)	11 (20)	10 (20)				59.7 63.7	38%	Y	Hybrid Bifocal IOL (OptiVis)	Diffractive Bifocal IOL (AcrySof ReSTOR			1, 2, 3, 4, 5	2개월

		연구	연구 국가 (기관수)	대상자					환자특	성								결과변수	최대추적
no.	1저자					연구	구대상기	다 수 (명	(안))			기저특성		중재군1	중재군2	중재군3	중재군4	(1.VA, 2.CS, 3.Satisfaction.	의내구식 관찰기간
	(연도)	셸			총	중재군 1	중재군 2	중재군 3	중재군 4	탈락률 (%)	평균 연령	남성 (%)	양안 시술 (Y/N)	(렌즈명)	(렌즈명)	(렌즈명)	(렌즈명)	4.Independence, 5.Complication)	Ce IC
														5:55	D1)				
536	Escando n-Garcia (2018)	전향적, NRS	포르투갈 (1)	Cataract surgery	45 (90)	7 (14)	15 (30)	23 (46)		0%	63	22%	Y	Diffractive Trifocal IOL (AcrySof® IQ PanOptix (TFNT00))	Diffractive EDOF (TECNIS® Symfony ZXR00)	Diffractive Trifocal IOL (FineVision Pod F)		1, 2	3개월
666	Song (2020)	전향적, NRS	중국 (1)	Cataract surgery	104 (141)	34 (47)	34 (47)	36 (47)		8%	69.6 69.7 68.6	49%	N	Diffractive EDOF Toric IOL (TECNIS Symfony ZXR00)	Refractive EDOF Toric IOL (LENTIS Comfort LS-313 MF15)		Monofocal IOL (LENTIS L-313)	1, 2, 4	3개월
3522	Plaza- Puche (2016)	전향적, NRS	스페인 (1)	Cataract surgery	60 (120)	15 (30)	15 (30)	15 (30)	15 (30)	0%	63.1 66.8 62.2 67.2	NA	Υ	Diffractive Trifocal IOL (AT LISA tri 839MP)	Diffractive Trifocal IOL (FineVision)	Diffractive Bifocal IOL (AcrySof ReSTOR SN6AD1)	Monofocal IOL (Acri.Smart 48S)	1	3개월
3241	Zamora- De-La-C ruz (2018)	전향적, NRS	멕시코 (1)	Cataract surgery, Presbyopia	12 (24)	7 (14)	5 (10)			0%	NA	NA	Υ	Diffractive Bifocal IOL (ReSTOR +2.50)	Diffractive Trifocal IOL (Acrysof IQ PanOptix)			1, 3, 4, 5	NA
469	Pedrotti (2020)	전향적, NRS	이탈리아 (1)	Presbyopia	50 (100)	25 (50)	25 (50)			0%	70.2 72.1	NA	Υ	Diffractive EDOF (TECNIS Symfony ZXR00)	Diffractive Trifocal IOL (Acrysof IQ PanOptix TNFT00)			1, 2, 5	3개월
691	Bohm (2019)	전향적, NRS	독일 (1)	Presbyopia	105 (210)	27 (54)	27 (54)	26 (52)	25 (50)	0%	63.4 63.5	50%	Y	Diffractive Trifocal	Diffractive Trifocal	Diffractive EDOF	Refractive Bifocal	1, 4, 5	3개월

			~-						환자특	성								결과변수	수ITU , 자
no.	1저자	연구	연구 국가	대상자		연구	대상기	구 (명	!(안))		7	기저특성		중재군1	중재군2	중재군3	중재군4	(1.VA, 2.CS, 3.Satisfaction.	최대추적 관찰기간
110.	(연도)	셸	(기관수)	"O' 1	총	중재군 1	중재군 2	중재군 3	중재군 4	탈락률 (%)	평균 연령	남성 (%)	양안 시술 (Y/N)	(렌즈명)	(렌즈명)	(렌즈명)	(렌즈명)	4.Independence, 5.Complication)	C2 IC
											69.2 66.7			IOL (AcrySof PanOptix)	IOL (AT LISA tri 839MP)	Toric IOL (TECNIS Symfony ZXR00)	IOL (LENTIS Mplus X LS-313 MF30)		
4240	Van Der Linden (2012)	전향적, NRS	네덜란드 (1)	Presbyopia	117 (233)	45 (90)	72 (143)			0%	61.8 59.7	42%	Υ	Refractive Bifocal IOL (LENTIS Mplus LS-312)	Diffractive Bifocal IOL (AcrySof ReSTOR SN6AD1)			1, 4, 5	3개월
3. N	3. NRS, Single−arm(전후) (27편)																		
	곽준영 (2012)	전향적, NRS	한국 (1)	백내장수술	20(40))					57.2	45%	Υ	Diffractive B (Acri.LISA 36			1, 2	6개월	
46_ 국내	최 문 정 (2020)	전향적, NRS	한국 (5)	백내장수술	96(19	2)				4%	61.2	35%	Υ	Diffractive E (TECNIS Syr	:	TECNIS Symfo	ony Toric)	1, 3, 4, 5	4-6개월
71_ 국내	Kretz (2016)b	전향적, NRS	독일 (NA)	Cataract surgery	30(60))				-	68.3	46%	Υ	Refractive B (LENTIS-313				1, 3, 4, 5	3개월
78_ 국내	권영기 (2015)	전향적, NRS	한국 (1)	백내장수술	22(44	1)		-		9%	52.6	45%	Υ	Diffractive Ti (AT LISA Tri				1, 3, 4	6개월
442	Kohnen (2020)	전향적, NRS	호주, 철제 목일 이탈이, 스페인 벨이에 영국 프랑스 네달린(17)	Cataract surgery	149(2	98)				3%	68.9	38%	Y	Diffractive Ti (AcrySof IQ I	,			1, 5	12개월
653	Kim (2020)	전향적, NRS	한국 (4)	Cataract surgery	44(88	3)		-		15%	60	25%	Υ	Diffractive To (AcrySof IQ I	rifocal IOL PanOptix TFNT	00)		1, 2, 3, 4, 5	3개월
732	Vounotry pidis (2017)	전향적, NRS	독일 (1)	Cataract surgery	22(44	1)	-	-		0%	69.2	45%	Υ		ive EDOF IOL S comfort LS-313 MF15)			1, 4, 5	3개월
1149	Kretz (2015)	전향적, NRS	오스트리아, 프랑스, 독일, 포르투갈, 스 페인(9)	Cataract surgery	38(57	")	·	-	·	0%	58.6	NA	N		ve Bifocal Toric IOL S ZMT(ZMT150, ZMT225, ZMT300, ZMT400))			1, 3, 4	2-4개월
1288	Tsaousis	전향적,	그리스	Cataract	20(40))		-		0%	70	45%	Υ	Diffractive E	Bifocal IOL			1	26개월

			~-					į	환자특	성								결과변수	
no.	、		연구	대상자		연구	'대상	다 수 (명	(안))	1	7	기저특성	T	중재군1	중재군2	중재군3	중재군4	(1.VA, 2.CS, 3.Satisfaction.	최대추적 관찰기간
110,	(연도)	설계	국가 (기관수)	네이시	총	중재군 1	중재군 2	중재군 3	중재군 4	탈락률 (%)	평균 연령	남성 (%)	양안 시술 (Y/N)	(렌즈명)	(렌즈명)	(렌즈명)	(렌즈명)	3.Satisfaction, 4.Independence, 5.Complication)	. 건글/ IC
	(2013)	NRS	(NA)	surgery										(AcrySof IQ F	ReSTOR IOLS	N60D3)			
10_ 국내	Kretz (2016)	전향적, NRS	독일 (NA)	백내장, 노안, RLE에 적절한 pre-presb yopia	50(100	0)					57.5	NA	Υ	Diffractive Tr (AT LISA Tri 8			1, 3, 4, 5	3개월	
471	Kohnen (2020)b	전향적, NRS	독일 (1)	Cataract surgery, Presbyopia	25(50)	-	-		0%	60	32%	Y		ifocal Toric IO PanOptixTFNT2		1, 2, 3, 4, 5	3개월	
488	Alio (2020)	전향적, NRS	스페인 (1)	Cataract surgery, Presbyopia	10(20)	-			0%	63.8	NA	Y		Refractive Trifocal IOL (Precizon Presbyopic IOL NVA model 570)				12개월
513	Power (2018)	전향적, NRS	이일랜드 (1)	Cataract surgery, Presbyopia	53(94)	-			0%	NA	NA	N	Diffractive EDOF IOL (Symfony)				1	중 앙 값 4.1개월
621	Friedrich (2012)	전향적, NRS	독일 (1)	Cataract surgery, Presbyopia	19(31))	-			0%	65	42%	N	Diffractive Bi (TECNIS ZME				1, 5	6개월
782	Chang (2019)	전향적, NRS	홍콩 (1)	Cataract surgery, Presbyopia	36(72)	-	-		0%	55.9	11%	Υ	Diffractive Bi (TECNIS ZME				1, 2, 3, 5	6개월
1409	Altaie (2012)	전향적, NRS	뉴질랜드 (1)	Cataract or CLE	203(3	83)				0%	C 66.5 CLE 55.9	43%	N	Diffractive Bi (AcrySof Natu	focal IOL ural ReSTOR I	OL SN60D3)		1, 3, 4, 5	6개월
3093	Tan (2019)	전향적, NRS	중국 (1)	Cataract surgery, Presbyopia	40(55)	-	-	·	0%	70.8	55%	N	Diffractive EDOF IOL (TECNIS Symfony IOL)				1, 2, 3, 4, 5	3개월
3220	Almulhim (2018)	전향적, NRS	사무드 아무너 아 (2)	Cataract surgery, Presbyopia	41(82)	-	-		9%	NA	49%	Y	Diffractive Trifocal IOL (AT LISA Tri 839MP, AT LISA Toric 939 MP)				1, 3, 4, 5	3개월
59	Alfonso (2010)	전향적, NRS	스페인 (1)	Emmetropic presbyopia	23(46)				0%	53.8	30%	Υ	Diffractive B (AcrySof ReS	ifocal IOL TOR Natural S	SN60D3)		1, 3, 4, 5	6개월
702	Levinger	전향적,	이스라엘	Presbyopia	26(26)	-			0%	53.8	58%	N	Diffractive Tr	focal IOL			1, 2, 3, 5	6개월

	환자특성 1저자 연구 ^{연구} 연구대상자 수(명(안)) 기저특								_					결과변수	최대추적				
no.	1저자	연구	국가	대상자		연기	'내상/	나 수 (명	(안))			' 서특경		중재군1	중재군2	중재군3	중재군4	(1.VA, 2.CS, 3.Satisfaction.	관찰기간
110.	(연도)	셸	(기관수)	110-1	총	중재군 1	중재군 2	중재군 3	중재군 4	탈락률 (%)	평균 연령	남성 (%)	양안 시술 (Y/N)	(렌즈명)	(렌즈명)	(렌즈명)	(렌즈명)	4.Independence, 5.Complication)	Ce IC
	(2019)	NRS	(1)											(FineVision Micro F)					
1162	Venter (2014)	전향적, NRS	남아프리카 (1)	Presbyopia	53(106)				0%	58.2	40%	Υ	Refractive Bifocal IOL (SBL-3)				1, 3, 5	3개월
1220	Mojzis (2014)	전향적, NRS	스페인 (1)	Presbyopia	30(60)					NA	57.9	NA	Υ	Diffractive Trifocal IOL (AT LISA Tri 839MP)				1, 3, 4, 5	6개월
1350	Ferrer- Blasco (2012)	전향적, NRS	<u>스</u> 페인 (1)	Presbyopia	30(60)					0%	M 50.8 H 52.1	65%	Υ		Diffractive Bifocal IOL (AcrySof ReSTOR SN6AD3)			1, 5	6개월
1485	Alfonso (2011)	전향적, NRS	스페인 (1)	Presbyopia	33(66)		-			0%	53.3	18%	Υ	Diffractive Bi (Acri.LISA 36				1, 5	6개월
1544	Alfonso (2010)b	전향적, NRS	스페인 (1)	Presbyopia	17(34)		i.			0%	52.9	18%	Υ	Diffractive Bi (447D IOL)	focal IOL			1, 5	6개월
1556	Alfonso (2010)c	전향적, NRS	스페인 (1)	Presbyopia	65(130)		-		0%	52.3	23%	Υ	Diffractive Bifocal IOL (Acri.Twin)			1, 5	6개월	
4009	Venter (2013)	전향적, NRS	영국 (1)	Ametropic presbyopia	58(89)		-	-		0%	54.8	60%	N		focal Toric IOL us Toric LU-3°			1, 3, 4, 5	3개월

표 3.3 포함문헌특성: 각막굴절수술(17편)

								환자특성						경기버스	
	1저자		연구			연구대	상자 수			기저특성				결과변수 (1.VA, 2.CS,	최대추적
no	(연도)	연구설계	국가 (기관수)	대상자	총	중재군 (N명(안))	대조군 (N명(안))	탈락 률 (%)	평균 연령	남성 (%)	양안 시술 (Y/N)	중재군(I)	대조군(c)	3. Satisfaction, 4. Independence, 5. Complication)	관찰기간
1. RC	T (1편)			_		_			_						
329	Khalifa (2011)	RCT	이집트 (1)	Myopic presbyopia	26명 (52인)	15명 (30안)	11명 (22안)	0%	중재: 47.5 대조: 45.2	35%	Y	all high-order aberrations were treated	Vertical coma aberrations were selectively left untreated	1, 2	3개월
2. NF	RS, 비교연구 ((4편)													
430	Kohnen (2020)	전향, NRS	독일 (1)	Presbyopia	29명 (58안)	14명 (28안)	15명 (30안)	3%	54.3	62%	Y	PresbyMAX (Hybrid micro-Monov ision)	PresbyMAX (micro-Mono vision)	1, 3, 4	12개월
734	Taneri (2019)	전향, NRS	독일 (1)	Hyperopic presbyopia	15명 (30안)	8명 (16안)	7명 (14안)	20%	중재: 52 대조: 53	27%	Υ	Varifocal LASIK (SUPRACOR)	Monofocal LASIK	1	3개월
1123	Soler Tomas (2015)	전향, NRS	스페인 (1)	Hyperopic presbyopia	30명 (40안)	14명 (21안)	16명 (19안)	0%	중재: 51.9 대조: 53.5	63%	N	asymmetrical presbyLASIK	symmetrical presbyLASIK	1, 3	18개월
1310	Oh (2013)	전향, NRS	한국 (1)	Presbyopia	23명 (46안)	12명 (24안)	11명 (22안)	0%	52.8	48%	Y	Aspheric comeal ablation with the CST	conventional presbyopic excimer laser(NCST)	1, 2	2년
3. NF	RS, Single-a	rm(전후) (12													
225	Jackson (2011)	전향, NRS	캐나다 (1)	Hyperopic presbyopia	33명 (66안)		NA	24%	55.1	34%	Υ	Aspheric Wave LASIK	front-guided	1, 2, 3, 4	12개월
457	Xu (2020)	전향, NRS	중국 (1)	Emmetropic presbyopia	4명 (8안)		NA	0%	58.5	0%	Υ	LaserACE		1, 4, 5	12개월
497	Liu (2020)	전향, NRS	중국 (1)	Myopic presbyopia	37명 (74안)		NA	8%	43.8	30%	Υ	PresbyMAX with micro-Monovisi		1, 2, 3, 5	12개월
695	Romero (2019)	전향, NRS	스페인 (1)	Myopic, hyperopic presbyopia	50명 (100안)		NA	0%	46.8	42%	Y	Presbyopia correction using micro-Monovision and aspheric aberration patterns		1, 2, 5	6개월
897	Pajic (2017)	전향, NRS	스위스 (NA)	Myopic presbyopia	36명 (72안)		NA	0%	NA	NA	Υ	multifocal prest (SUPRACOR)	pyLASIK	1, 5	6개월

								환자특성						결과변수	
	1저자		연구			연구대	상자 수			기저특성				(1.VA, 2.CS,	최대추적
no	(연도)	연구설계	국가 (기관수)	대상자	ن ې	중재군 (N명(안))	대조군 (N명(안))	탈락률 (%)	평균 연령	남성 (%)	양안 시술 (Y/N)	중재군(I)	대조군(c)	3.Satisfaction, 4.Independence, 5.Complication)	관찰기간
929	Schlote (2017)	전향, NRS	스위스 (1)	Hyperopic presbyopia	20명 (39안)		NA ·	0%	59	50%	Υ	Multifocal centra LASIK (SUPRAC	. , .	1, 2, 3, 4	12개월
958	Wang Yin (2016)	전향, NRS	프랑스 (1)	Hyperopic presbyopia	69명 (138안)		NA ·	0%	53.84	41%	Υ	central presbyo Custom Q algor		1, 3	12개월
963	Zhang (2016)	전향, NRS	중국 (1)	Myopic presbyopia	40명 (80안)		NA ·	0%	43.4	NA	Υ	Aspheric Micro LASIK (LBV)	-monovision	1, 2, 3, 4	3개월
1225	Cosar (2014)	전향, NRS	터키 (1)	Hyperopic presbyopia	68명 (123안)		NA ·	0%	57.3	50%	N	SUPRACOR		1, 5	6개월
1268	Ryan (2013)	전향, NRS	아일랜드 (1)	Hyperopic presbyopia	23명 (46안)		NA ·	0%	57	17%	Υ	SUPRACOR		1, 3, 4, 5	6개월
1309	Luger (2013)	전향, NRS	NA (NA)	Presbyopia	33명 (66안)		NA	6%	53	NA	Υ	Schwind Presby	MAX	1, 2	1년
1392	Uthoff (2012)	전향, NRS	독일 (1)	Hyperopic, emmetropic, myopic presbyopia	30명 (60안)		NA	0%	원시: 54 정시: 52 근시: 51	30%	Y	PresbyMAX		1, 2	6개월

1.3. 비뚤림위험 평가 결과

1.3.1. 다초점 인공수정체

노안교정을 위한 다초점 인공수정체에 관한 최종 선택문헌 39편의 비뚤림위험을 평가하였다.

1.3.1.1. 무작위배정임상시험

무작위배정임상시험 3편(Alio, 2011; Gundersen, 2016; Monaco, 2017)에 대해서는 RoB의 평가도구를 이용하여 평가한 결과, 1편(Monaco, 2017)을 제외한 해당 문헌들에서 무작위배정순서 생성, 배정순서 은폐에 대한 세부기술이 부재한 경우가 많아 중재 배정 비뚤림위험을 'Unclear'로 평가하였다. 또한 이중맹검에 대한 언급이 있으나 연구 참여자, 연구자에 대한 세부기술이 부재하여 실행 비뚤림위험은 'Low'로 평가하였다. 결과평가에 대한 눈가림(결과 확인 비뚤림), 불충분한 결과자료(탈락 비뚤림)은 모든 연구에서 모두 적절히 적용되어 'Low'로 평가하였으며, 1편(Gundersen, 2016)의 연구에서 일차결과변수에 대한 불완전한 결과보고로 인해 메타분석에 포함시킬 수 없어 선택적 보고(보고 비뚤림)을 'High'로 평가하였으며, 그 외 비뚤림위험은 민간연구지원을 받은 1편(Gundersen, 2016)의 연구를 'High'로 평가되었다.

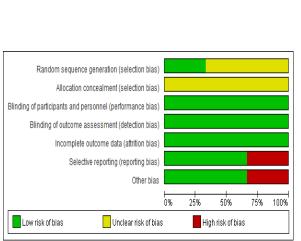


그림 3.2 비뚤림위험 그래프(RCT): IOL

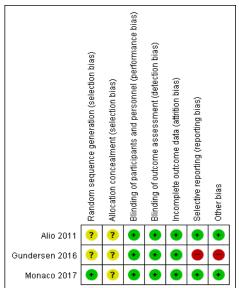


그림 3.3 비뚤림위험에 대한 평가결과요약(RCT): IOL

1.3.1.2. 비무작위연구

비무작위연구 36편은 RoBANS 도구를 이용하여 평가하였다. 비교연구 9편 중 8편(Pedrotti, 2017; 박율리, 2018; Escandon-Garcia, 2018; Song, 2020; Plaza-Puche, 2016; Zamora-De-La-Cruz, 2018; Pedrotti, 2020; Bohm, 2019; Van Der Linden, 2012)은 중재군과 대조군이 적응증과 질병중증도 등에 차이가 없어 비교할 만한 인구집단이었으며 나머지 27편의 단일군 연구 역시 중재에 대한 노출전후의 인구집단이 동일하여 대상군 비교가능성과 관련한 선택 비뚤림위험은 모두 'Low'로 평가하였다.

비교연구 9편에서 참여자 모집전략이 중재군, 대조군 모두 동일하거나 전후연구에서 대상자가 전향적으로 연속적으로 수집된 경우는 선택 비뚤림위험을 'Low'으로 평가하였으며, 단일군 연구는 모두 전향적 수집연구였지만 연속적으로 대상자가 수집되었는지 불명확한 16편에서 대상군 선정과 관련한 선택비뚤림을 'Unclear'로 평가하였다.

비교연구(9편)은 주요 교란변수에 대한 확인이 불확실하고 이를 설계단계 및 분석단계에서 적절하게 고려하였는지 여부가 불확실하여 선택비뚤림을 'Unclear'로 평가한 반면, 전후연구(27편)에서 질병, 중재 등의 특성상 시간경과에 따른 전후 차이를 배제할 수 있는 경우는 'Low'로 평가하였다.

모든 연구에서 노안교정을 위한 다초점 인공수정체 시술의 노출측정은 의무기록 등 신뢰할 수 있는 출처를 기준으로 하였으며, 대부분의 연구에서 결과평가자의 눈가림은 없었지만 눈가림여부가 시력과 같은 객관적인 결과측정에 영향을 미치지 않는 것으로 판단하여 실행비뚤림과 확인비뚤림에서 모든 연구의 비뚤림위험을 'Low'로 평가하였다.

결과 평가에서 환자만족도와 같은 주관적 보고결과에서 신뢰도와 타당도가 입증된 도구를 사용하였는지를 명확하게 기술하지 않은 연구 되지 않은 17편은 확인 비뚤림위험을 'Unclear'로 평가하였다. 불완전한 자료와 관련한 탈락비뚤림의 경우 4편(최문정, 2020; 권영기, 2015; Kretz, 2015; Tan, 2019)에서 탈락이 있었으나 이에 대한 사유 혹은 완료자와의 비교 등에 대한 언급이 이루어지지 않아 'Unclear'로 평가하였다.

선택적 결과보고의 경우 시력 일차결과변수에 대한 불완전한 결과보고로 인해 메타분석에 포함시킬 수 없었던 5편(박율리, 2018; Kim, 2020; Song, 2020; Zamora-De-La-Cruz, 2018; Van Der Linden, 2012)은 선택적 보고(보고 비뚤림)을 'High'로 평가하였다. 기타 비뚤림위험은 민간연구비 지원을 받은 5편(Kohnen, 2020; Kohnen, 2020b; Kim, 2020; Chang, 2019; Kretz, 2015)에 대해 'High'로 평가하였으며 연구비 출처에 대해서 명확한 기술이 없는 경우 'Unclear'로 평가하였다.

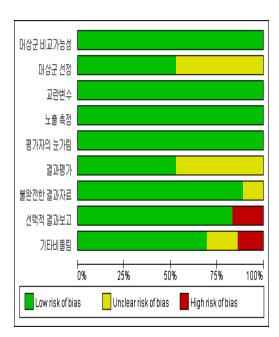


그림 3.4 비뚤림위험 그래프(NRS): IOL

그림 3.5 비뚤림위험에 대한 평가결과요약(NRS): IOL

1.3.2. 각막굴절수술

노안교정을 위한 각막굴절수술의 최종 선택문헌 17편의 비뚤림위험을 평가하였다.

1.3.2.1. 무작위배정임상시험

무작위배정임상시험 1편(Khalifa, 2011)에 대해서는 Cochrane RoB의 평가도구를 이용하여 평가한 결과, 해당 문헌에서 무작위배정순서 생성, 배정순서 은폐에 대한 세부기술이 부재하여 중재 배정 비뚤림위험을 'Unclear'로 평가하였다. 또한 이중맹검에 대한 세부기술이 부재하였지만, 눈가림이 결과에 영향을 미치지 않을 것으로 평가하여 실행 비뚤림위험은 'Low'로 평가하였다. 이외 결과평가에 대한 눈가림(결과 확인 비뚤림), 불충분한 결과자료(탈락 비뚤림), 선택적 보고(보고 비뚤림), 그 외비뚤림위험(민간 연구비 지원)을 모두 'Low'로 평가되었다.

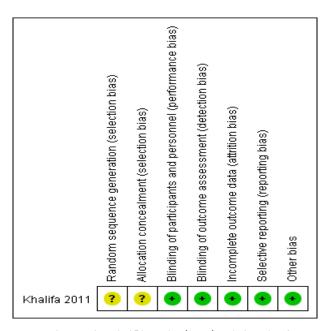


그림 3.6 비뚤림위험 그래프(RCT): 각막굴절수술

1.3.2.2. 비무작위연구

비무작위연구 16편은 RoBANS 도구를 이용하여 평가하였다. 비교연구 4편(Kohnen, 2020; Taneri, 2019; Soler Tomas, 2015; Oh, 2013)은 중재군과 대조군이 적응증과 질병중증도 등에 차이가 없어 비교할 만한 인구집단이었으며 나머지 12편의 전후연구 역시 중재에 대한 노출전후의 인구집단이 동일하여 대상군 비교가능성과 관련한 선택 비뚤림위험은 16편 모두 'Low'로 평가하였다. 대상군 선정과 관련한 선택비뚤림에서는 모두 전향적 수집연구였지만 연속적으로 대상자가 수집되었는지 불명확한 12편은 'Unclear'로 평가하였다. 비교연구에서 참여자 모집전략이 중재군, 대조군 모두 동일하거나 전후연구에서

대상자가 전향적으로 연속적으로 수집된 경우는 선택 비뚤림위험을 'Low'으로 평가하였다. 비교연구 2편에서 교란변수와 관련한 선택 비뚤림위험을 평가할 자료가 충분하지 않아 'Unclear'로 평가하였으며 전후연구에서 질병, 중재 등의 특성상 시간경과에 따른 전후 차이를 배제할 수 있는 경우는 'Low'로 평가하였다. 노안교정을 위한 각막굴절수술이라는 노출측정은 의무기록과 같이 신뢰할 수 있는 출처를 기준으로 하였으며, 대부분의 연구에서 결과평가자의 눈가림은 없었지만 눈가림여부가 시력과 같은 결과측정에 영향을 미치지 않는 것으로 판단하여 실행비뚤림과 확인비뚤림에서 모든 연구의 비뚤림위험을 'Low'로 평가하였다. 결과 평가에서 환자만족도와 같은 주관적 보고결과에서 신뢰도와 타당도가 입증되지 않은 도구를 사용한 경우가 있어 이 경우 확인 비뚤림위험을 'High'로 평가하고(Jackson, 2011), 이외 관련 정보를 명확히 기술하지 않은 4편(Xu, 2020; Schlote, 2017; Zhang, 2016; Ryan, 2013)은 'Unclear'로 평가하였다. 불완전한 자료와 관련한 탈락비뚤림의 경우 4편(Jackson, 2011; Kohnen, 2020; Liu, 2020; Luger, 2013)에서 탈락이 있었으나 이에 대한 사유 혹은 완료자와의 비교 등에 대한 언급이 이루어지지 않아 'Unclear'로 평가하였다. 선택적 결과보고의 경우 17편 연구 모두 프로토콜을 확인할 수 없었으며, 연구방법에서도 결과변수에 대해 기술되지 않은 연구 2편(Xu, 2020; Taneri, 2019)의 경우 해당 보고비뚤림을 'Unclear'로 평가하였다. 기타 비뚤림위험(민간 연구비지원)은 4편(Jackson, 2011; Kohnen, 2020; Taneri, 2019; Luger, 2013)에서 'High'로 평가하였다.

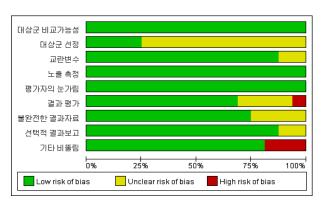


그림 3.7 비뚤림위험 그래프(NRS): 각막굴절수술

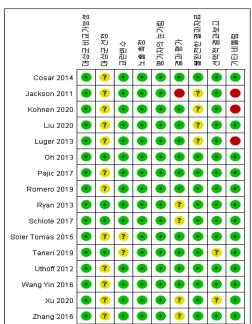


그림 3.8 비뚤림위험에 대한 평가결과요약(NRS): 각막굴절수술

2. 분석결과: 다초점 인공수정체

2.1. 안전성

다초점 인공수정체 관련 안전성을 평가하기 위해 보고된 관련 변수를 시각관련 불편감, 수술관련 합병증을 정리하였다. 안전성 관련 보고가 제시된 문헌은 총 30편이었으며 이중 비교군 연구는 9편, 단일군 연구는 21편이었다. 안전성 결과는 연구마다 평가 및 보고의 이질성으로 인해 합성이 불가능하였다.

2.1.1. 비교군 연구

2.1.1.1. 시각관련 불편감

비교군 연구에서 보고된 시각관련 불편감으로는 달무리(Halo), 눈부심(Glare), 빛뻗침(Starbursts) 등이 확인되었으며 이 중 연구들에서 가장 많이 보고한 증상은 달무리(Halo)현상이었다. 다초점 인공수정체에서 달무리(Halo)는 9-40%, 눈부심(Glare)은 0-9%, 빛뻗침(Starbursts)은 0-40%로 발생에 개인차가 큰 것으로 보인다.

표 3.6 IOL: 시각관련 불편감(비교군 연구)

제1저자				시각관련 불편감
(출판연도)	중재군	대조군	추적관찰	결과
Monaco ¹⁾ (2017)	① Diffractive Trifocal IOL, ② Diffractive EDOF IOL	③ Monofocal IOL	4개월	· Halo 빈도: ① 3명(15%), ② 5명(25%)에서 Halo를 매우 자주 경험한다고 보고함 ③ 해당문헌에서 기술하지 않음 · Halo 중증도: 중등도 이상으로 보고한 경우는 ① 3명(15%), ② 4명(20%) ③ 해당문헌에서 기술하지 않음
Song (2020) ²⁾	① Diffractive EDOF toric IOL, ② Refractive EDOF toric IOL	③ Monofocal IOL	3개월	Day glare: ① 0.36±1.42, ② 0.38±1.19, ③ 0.15±0.59 (p=0.673) Night glare: ① 0.43±1.16, ② 0.57±1.54, ③ 0.19±0.97 (p=0.221) Halo: ① 1.18±2.41, ② 0.64±1.52, ③ 0.21±0.83 (p(0.001) Starburst: ① 1.3±2.07, ② 0.83±1.61, ③ 0.43±1.3 (p=0.02) Hazy vision: ① 0, ② 0.32±0.94, ③ 0.06±0.44 (p=0.027) Blurred vision: ① 0.66±1.32, ② 0.6±1.17, ③ 0.45±1.08 (p=0.689) Distortion: ① 0, ② 0.09±0.41, ③ 0 (p=0.133) Double vision: ① 0.11±0.52, ② 0.3±0.86, ③ 0.13±0.88 (p=0.091) Fluctuation in vision: ① 0.38±1.11, ② 0.13±0.61, ③ 0.13±0.61 (p=0.098) Focusing difficulty: ① 0.36±0.13, ② 0.19±0.14, ③ 0.06±0.06 (p=0.008) Double vision: ① 0.11±0.52, ② 0.3±0.71, ② 0.09±0.58, ③ 0.02±0.15 (p=0.039)
박율리 (2018)	① Diffractive Bifocal IOL	② Hybrid Bifocal IOL	2개월	· Halo: ① 4/10(40%), ② 1/11(9%) · Glare: ① 0/10(0%), ② 1/11(9%) · Starburst: ① 4/10(40%), ② 0/11(0%)

1) RCT 연구; 2) 0-3점 척도(0점 best); IOL: intraocular lens

RCT인 Monaco (2017)의 연구에서는 달무리(Halo) 현상이 회절형 삼중초점 인공수정체에서 15%,

연속초점 인공수정체에서 25% 발생하였으며 중등도 이상의 달무리(Halo) 현상을 보고한 경우도 각각 15%, 20% 수준으로 보고되었다.

Non-RCT인 Song 등(2020)의 연구에서는 달무리(Halo), 빛뻗침(Starbursts), 초점을 맞추기 어려운 현상(focusing difficulty), 거리감(입체감)을 판단하기 어려운 느낌(depth perception difficulty)으로 인한 불편함의 정도가 인공수정체 간에 통계적으로 유의한 차이가 있음을 보고하였다.

■ 원거리 교정시력

RCT, Non-RCT 연구 모두에서 원거리 교정시력에서 단초점 인공수정체와 다초점 인공수정체간의 통계적으로 유의한 차이를 확인할 수 없었다.

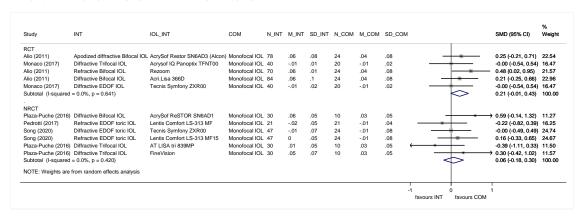


그림 3.9 IOL: 교정시력(비교군 연구)

2.1.1.2. 수술관련 합병증

비교군 연구에서 보고된 수술관련 합병증을 보고한 7편의 연구 중 6편에서 관련 합병증 발생이 없다고 보고하였다. Pedrotti (2017)의 연구에서는 인공수정체 시술 후 후낭혼탁의 발생이 굴절형 연속초점 인공수정체군에서 14%, 단초점 인공수정체군에서 19%로 발생하였다고 보고하였다.

표 3.7 IOL: 수술관련 합병증(비교군 연구)

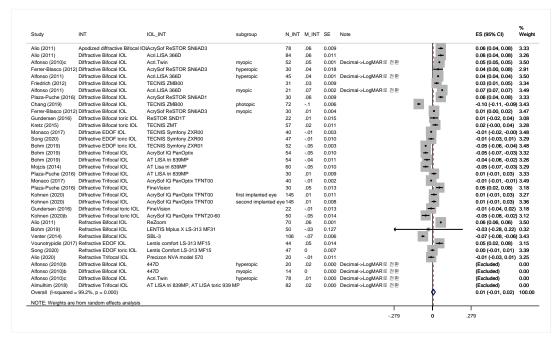
제1저자	ᄌᆌᄀ	FU T 7		안전성 보고
(출판연도)	중재군	대조군	추적관찰	결과
Gundersen (2016) ¹⁾	Diffractive Bifocal toric IOL	Diffractive Trifocal toric IOL	4개월	수술관련 합병증 발생 없음(2군 모두 0건)
Monaco (2017) ¹⁾	Diffractive Trifocal IOL, Diffractive EDOF IOL	Monofocal IOL	4개월	수술관련 합병증 발생 없음(3군 모두 0건)
Pedrotti (2017)	① Refractive EDOF toric IOL	② Monofocal IOL	12개월	· PCO: ① 3/21(14%), ② 4/21(19%) · IOL tilt or decentration: 발생없음
Pedrotti (2020)	Diffractive Trifocal IOL	Diffractive EDOF	3개월	수술관련 합병증 발생 없음(2군 모두 0건)
Zamora-De- La-Cruz (2018)	Diffractive Trifocal IOL	Diffractive Bifocal IOL	NA	PCO 발생없음(2군 모두 0건)
Van Der Linden (2012)	Diffractive Bifocal IOL	Refractive Bifocal IOL	3개월	IOL decentration(≥ 1.0mm) 발생 없음(2건 모두 0건)
Bohm (2019)	Diffractive Trifocal IOL, Diffractive EDOF toric IOL	Refractive Bifocal IOL	3개월	수술 관련 혹은 PCO를 포함한 수술후 관련 합병증 발생없음(2군 모두 0건)

¹⁾ RCT 연구; PCO: posterior capsule opacification; IOL: intraocular lens

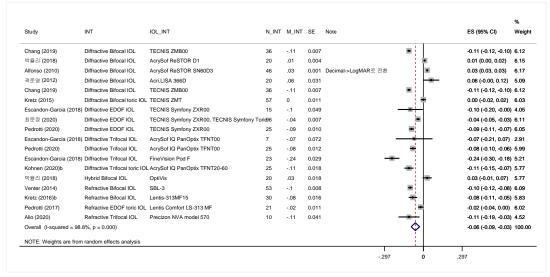
2.1.2. 단일군 연구

2.1.2.1. 시각관련 불편감

단일군 연구 13편에서도 달무리(Halo), 눈부심(Glare), 빛뻗침(Starbursts) 등의 시각관련 불편감이 보고되었다. 달무리(Halo)의 경우 Kretz (2016b)의 연구는 0%인 것에 비해 Almulhim (2018)의 연구에서는 65.9%에서 보고되어 연구마다 개인차가 큰 것으로 확인되었다. 눈부심(Glare) 2-51%, 밤운전시 눈부심(Glare)현상의 발생빈도는 2.5-69%로 연구마다 차이가 컸다.


표 3.8 IOL: 시각관련 불편감(단일군 연구)

제1저자	ᄌᆌᄀ		안전성 보고
(출판연도)	중재군	추적관찰	결과
Alfonso (2010) ¹⁾	Diffractive Bifocal IOL	6개월	Night vision: 7.70±1.30Glare: 1.20±0.60Halo: 2.50±0.50
Altaie (2012)	Diffractive Bifocal IOL	6개월	Halo: 21/205(10.2%)
Chang (2019) ²⁾	Diffractive Bifocal IOL	3, 6개월	 Halo around lights: 3개월 10명(28%), 6개월 15명(42%)에서 발생하지 않음 Glare at night: 3개월 11명(31%), 6개월 15(42%)에서 발생하지 않음 Double images/ghosting: 3개월 35명(97%), 6개월 36명(100%)에서 발생하지 않음
Kretz (2015)	Diffractive Bifocal toric IOL	2-4개월	Photic phenomena: 36안(63%)에서 보고함
Venter (2014) ³⁾	Refractive Bifocal IOL	3개월	Starburst (Night vision): 2.80±1.50 Glare (Night vision): 3.00±1.60 Halo (Night vision): 3.20±1.60 Double vision (Night vision): 2.50±1.60
Venter (2013) ⁴⁾	Refractive Bifocal toric IOL	3개월	· Starburst and halo: 12명(20.7%)에서 어려움 호소 · Glare: 12명(20.7%)에서 어려움 호소 · Ghosting/Doubling: 6명(10.3%)에서 어려움 호소
Kretz (2016)b	Refractive Bifocal IOL	3개월	Photic phenomena(halo or glare): 0명(0%)에서 보고함
Kohnen (2020)	Diffractive Trifocal IOL	12개월	· Blurred vision: 첫 번째 눈 1안(0.7%), 두 번째 눈 0안(0%) 보고 · Visual field defect: 첫 번째 눈 1안(0.7%), 두 번째 눈 1안(0.7%) 보고 · Halo: 첫 번째 눈 4안(2.7%), 두 번째 눈 4안(2.7%)에서 보고 · Glare: 첫 번째 눈 3안(2.0%), 두 번째 눈 3안(2.0%)에서 보고
Almulhim (2018)	Diffractive Trifocal IOL	1, 3개월	· Glare: 1개월 9명(22.0%) 3개월 2명(4.9%)에서 보고 · Halo: 1개월 27명(65.9%), 3개월 14명(34.1%)에서 보고 · Starburst: 1개월 1명(2.4%), 3개월 1명(2.4%)에서 보고 · Blurred vision: 1개월 2명(4.9%), 3개월 1명(2.4%)에서 보고 · 해당 증상의 불편감: 1개월 2명(5.1%), 3개월 0명(0%)
Kim (2020)	Diffractive Trifocal IOL	3개월	· Halo: 첫 번째 눈 3안(6.7%), 두 번째 눈 3안(6.7%)에서 보고, IOL 시술 전 Halo 증상이 없던 대상자 중 2명 발생 · Glare: 첫 번째 눈10안(22.2%), 두 번째 분 9안(20.5%)에서 보고 · Visual impairment: 첫 번째 눈 3안(6.7%), 두 번째 눈 3안(6.7%)에서 보고 · Photopsia: 첫 번째 눈 1안(2.2%) 보고
Levinger (2019) ⁵⁾	Diffractive Trifocal IOL	6개월	· Glare: 관련 문제를 보고(2점 이상)고 응답한 환자 13명(51.0%) · Halo: 관련 문제를 보고(2점 이상)고 응답한 환자 14명(54.0%) · Starburst: 관련 문제를 보고(2점 이상)고 응답한 환자 7명(28.0%) · Double vision: 관련 문제를 보고(2점 이상)고 응답한 환자 5명(20.0%)
Tan (2019)	Diffractive EDOF IOL	3개월	· Halos: 2명(3.64%)에서 보고함 · Glare during night driving: 1명(2.5%)에서 보고함
Vounotrypidis (2017)	Refractive EDOF IOL	3개월	대부분의 환자에서 mesopic condition에서 광시장애의 특정징후는 없다고 보고함. 그러나 2명((2/22, 9.1%)의 환자는 빛조건과 무관한 광현상을 보고함


1) 0-9점(9점 best); 2) 해당 현상에 대한 불편감을 Not present, Present but not bothersome, Mildly bothersome, Moderately bothersome, Very bothersome으로 조사; 3) 1-7점(1점 best); 4) A lot of difficulty, moderate difficulty; 5) 1-6점(1점 best); IOL: intraocular lens

■ 원거리 교정시력

다초점 인공수정체 시술 이후 원거리 교정시력을 보고한 연구들에서의 결과는 아래와 같다. 시술 후 단안기준을 측정된 원거리 교정시력을 연속형으로 보고한 연구들을 합성한 결과는 $0.01 \log MAR$ (95% CI: -0.01, 0.02)이었으며 양안기준에서는 $-0.06 \log MAR$ (95% CI: -0.09, -0.03)으로 나타났다. 다초점 인공수정체 시술 후 원거리 교정시력과 관련한 문제는 없는 것으로 판단된다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 이질성이 매우 높은 수준으로 결과 해석시 이에 대한 주의가 필요해 보인다.

@ 단안기준

ⓑ 양안기준

그림 3.10 IOL: 교정시력(단일군, 원거리)

2.1.2.2. 수술관련 합병증

단일군 연구 중수술관련 합병증을 보고한 20편 중 12편의 연구에서 수술 관련 합병증은 발생하지 않았다고 보고하였다. 보고된 수술관련 합병증에는 시술 후 후낭혼탁(PCO), 염증, 안구건조증 등이 있었다. 후낭혼탁이 발생하였다고 3편의 연구들에서 발생빈도는 2.2-5.4% 수준이었으며 Vounotrypidis (2017)의 연구에서는 그 증상(0-4점)이 0.23±0.16점으로 발생한 후낭혼탁의 중증도는 경미한 것으로 보고하였다. 안구건조증은 8.8-24.4%으로 보고되었다. 다초점 인공수정체 시술 후 잔여 굴절이상을 교정하기 위해 각막굴절수술을 받은 환자의 비율은 Altaie (2012)의 연구에서 4.4% (16안), Venter (2013)의 연구에서는 6.9% (4명)에서 보고되었다. 이외 각종 염증 및 각막 부종 등 다양한 합병증이 보고되었으나 모두 간단한 처치 또는 추가적인 처치 없이 회복 가능한 경미한 사례들이었다.

표 3.9 IOL: 수술관련 합병증(단일군 연구)

제1저자	スポコ		안전성 보고
(출판연도)	중재군	추적관찰	결과
Ferrer- Blasco (2012)	Diffractive Bifocal IOL	6개월	추가 시술이 필요한 경우가 없었음. 수술 후 corneal edema, pupillary block, endophthalmitis와 같이 시력을 위협하는 합병증은 관찰되지 않았음. 마지막 추적관찰시점까지 후낭절제술(posterior capsulotomy)이 필요한 경우가 없었음
Alfonso (2010)b	Diffractive Bifocal IOL	6개월	2차 시술을 필요로 하는 경우, 시력을 위협하는 합병증이 발생하지 않음. 마지막 f/u까지 Nd:YAG가 필요한 경우는 없었음
Alfonso (2010)c	Diffractive Bifocal IOL	6개월	2차 시술을 필요로 하는 경우, 시력을 위협하는 합병증이 발생하지 않음. 마지막 f/u까지 Nd:YAG가 필요한 경우는 없었음
Altaie (2012)	Diffractive Bifocal IOL	6개월	· PCO: 발생하지 않음 · LASIK after IOL implantation: 16안(4.4%)에서 시행 · IOL 시술 중 LRI 시행, IOL 시술 후 LASIK 시행: 2명(1.2%)에서 시행
Alfonso (2011)	Diffractive Bifocal IOL	6개월	2차 시술을 필요로 하는 경우, 시력을 위협하는 합병증이 발생하지 않음. 마지막 f/u까지 Nd:YAG가 필요한 경우는 없었음
Friedrich (2012)	Diffractive Bifocal IOL	6개월	수술 중 이상반응 혹은 합병증은 발생하지 않았음
Chang (2019)	Diffractive Bifocal IOL	6개월	수술 중 합병증이 없었고 IOL exchange도 필요하지 않았음
Venter (2014)	Refractive Bifocal IOL	3개월	수술 중 혹은 수술후 합병증은 발생하지 않음
Kretz (2016)b	Refractive Bifocal IOL	3개월	수술 중 또는 추적관찰 중에 후부피막파열(posterior capsule rupture), 안구내염(endophthalmitis), 각막변성(corneal decompensation)과 같은 중증 합병증은 발생하지 않음
Venter (2013)	Refractive Bifocal toric IOL	3개월	· 수술중 합병증은 없었음 · Iritis(홍채염): 2건(3.4%)발생, 국소스테로이드 치료후 회복 · PCO: 추적관찰기간 동안 발생하지 않음 · 재치료: 나머지 굴절이상 교정을 위해 4명(6.9%)에서 LASIK 혹은 astigmatic keratotomy을 받음
Kretz (2016)	Diffractive Trifocal IOL	3개월	추적관찰기간 동안 유의미한 PCO가 발견되지 않음
Kohnen (2020)	Diffractive Trifocal IOL	12개월	· Retinal detachment: 첫 번째 눈 2건(1.3%), 두 번째 눈 2건(1.4%) 보고 · Retinopexy: 첫 번째 눈 2건(1.3%), 두 번째 눈 1건(0.7%) 보고 · Eye operation: 첫 번째 눈 1건(0.7%) 보고 · IOL extraction: 첫 번째 눈 1건(0.7%) 보고 · IOL repositioning: 두 번째 눈 1건(0.7%) 보고 · Ioncreased IOP: 첫 번째 눈 1건(0.7%) 보고 · Device dislocation: 두 번째 눈 1건(0.7%) 보고 · Optic nerve cup-to-disc ratio increase: 첫 번째 눈 1건(0.7%), 두 번째 눈 1건(0.7%) 보고 · Vitrectomy: 두 번째 눈 1건(0.7%) 보고 · Dry eye: 첫 번째 눈 1건(10.1%), 두 번째 눈 13건(8.8%) 보고 · PCO: 첫 번째 눈 15건(10.1%), 두 번째 눈 13건(8.8%) 보고 · Foreign body sensation: 첫 번째 눈 5건(3.4%), 두 번째 눈 3건(2.0%) 보고 · Corneal edema: 첫 번째 눈 4건(2.7%), 두 번째 눈 4건(2.7%) 보고 · Blepharitis: 첫 번째 눈 3건(2.0%), 두 번째 눈 3건(2.0%) 보고 · Vitreous detachment: 첫 번째 눈 3건(2.0%), 두 번째 눈 3건(2.0%) 보고

제1저자	スポフ		안전성 보고					
(출판연도)	중재군	추적관찰	결과					
Almulhim (2018)	Diffractive Trifocal IOL	3개월	IOL decentration 혹은 PCO는 추적관찰기간내에 보고되지 않음					
Kohnen (2020)b	Diffractive Trifocal toric IOL	3개월	연구기간 동안 이상반응은 발생하지 않음					
Kim (2020)	Diffractive Trifocal IOL	3개월	· Dry eye: 첫 번째 눈 11건(24.4%), 두 번째 눈 10건(22.7%) 보고 · Foreign body sensation: 첫 번째 눈 3건(6.7%), 두 번째 눈 5건(4.5%) 보고 · Vitreous floaters: 첫 번째 눈 2건(4.4%), 두 번째 눈 3건(6.7%) 보고 · PCO: 첫 번째 눈 1건(2.2%), 두 번째 눈 2건(4.4%) 보고 · Conjunctivitis allergic: 첫 번째 눈 1건(2.2%), 두 번째 눈 1건(2.2%) 보고 · Corneal abrasion: 첫 번째 눈 1건(2.2%), 두 번째 눈 1건(2.2%) 보고 · Corneal edema: 첫 번째 눈 1건(2.2%), 두 번째 눈 1건(2.2%) 보고 · MGD: 첫 번째 눈 1건(2.2%), 두 번째 눈 1건(2.2%) 보고 · Conjunctivitis: 첫 번째 눈 1건(2.2%)보고 · Corneal opacity: 첫 번째 눈 1건(2.2%)보고 · Device dislocation: 두 번째 눈 1건(2.2%)보고 · Myopia: 두 번째 눈 1건(2.2%)보고 · Myopia: 두 번째 눈 1건(2.2%)보고 · Surgery: 두 번째 눈 1건(2.2%)보고 · Surgery: 두 번째 눈 1건(2.2%)보고					
Levinger (2019)	Diffractive Trifocal IOL	6개월	수술 중 합병증이 없었고 IOL exchange도 필요하지 않았음					
Mojzis (2014)	Diffractive Trifocal IOL	6개월	· 추적관찰 기간 동안 PCO, endophthalmitis, corneal decompensation와 같은 심각한 합병증은 발생하지 않았음 · Increased IOP: 2명(6.7%)에서 수술직후 발생, 치료후 회복					
최문정 (2020)	Diffractive EDOF IOL	4-6개월	· Macular edema: 1명(1%)에서 발생, 트리암시놀론 주사치료후 완전회복 · Refractive touch-up treatment: 5명(5.2%)에서 시행 · IOL decentration or tilt: 발생보고없음					
Tan (2019)	Diffractive EDOF	3개월	· Corneal edema: 수술 후 첫째날 1안(1.82%)에서 발생, 3회 치료 이후 회복됨 · High IOP: 2안(3.6%)에서 발생, anterior chamber lavage 3회 이후 회복 · 안내염(endophtalmitis), PCO, pupil deformation은 추적관찰기간 보고되지 않음					
Vounotrypidis (2017)	Refractive EDOF IOL	3개월	PCO(0-4점): 0.23±0.16					

PCO: posterior capsule opacification; LRI: limbal relaxing incisions; IOP: intraocular pressure; MGD: Meibomian gland dysfunction; IOL: intraocular lens

2.2. 효과성

2.2.1. 나안시력

표 3.10 IOL: 나안시력 요약표

				다이	·기준				양안기준							
결과지표	합성수	안구수			5% CI)		l ²	유의성	합성수	안구수			5% CI)		l ²	유의성
RCT																
원거리(LogMAR)	5	424	SMD	0.16	[-0.11,	0.44]	35.8	NS				Not av	ailable			
중간거리(LogMAR)	2	120	SMD	-2.08	[-2.73,	-1.44]	46.4					Not av	ailable			
근거리(LogMAR)	2	120	SMD	-4.07	[-5.24,	-2.91]	67.8					Not av	ailable a			
Non-RCT																
원거리(LogMAR)	5	262	SMD	-0.36	[-0.82,	0.09]	62.0	NS	1	42	SMD	-0.53	[-1.15,	0.08]	_	NA
중간거리(LogMAR)	2	142	SMD	-0.32	[-0.67,	0.03]	0.0	NS	1	42	SMD	-2.21	[-2.99,	-1.42]	_	NA
근거리(LogMAR)	5	262	SMD	-1.59	[-2.68,	-0.50]	91.8		1	42	SMD	-0.46	[-1.07,	0.15]	_	NA
단일군연구																
원거리																
LogMAR	38	2,004	Mean	0.08	[0.06,	0.09]	97.5	NA	23	833	Mean	0.01	[-0.01,	0.03]	89.9	NA
≥20/20	6	391	Prop.	0.61	[0.44,	1.00]	94.0	NA	5	417	Prop.	0.75	[0.60,	1.00]	94.0	NA
≥20/32	4	259	Prop.	0.95	[0.91,	1.00]	49.0	NA	4	285	Prop.	0.98	[0.95,	1.00]	55.0	NA
≥20/40	6	413	Prop.	1.00	[0.99,	1.00]	10.0	NA	2	189	Prop.	0.99	[0.98,	1.00]	0.0	NA
중간거리																
LogMAR	17	911	Mean	0.15	[0.11,	0.18]	97.8	NA	12	419	Mean	0.12	[0.09,	0.15]	93.9	NA
≥20/20	4	238	Prop.	0.25	[0.00,	1.00]	97.0	NA	3	140	Prop.	0.47	[0.00,	1.00]	94.0	NA
≥20/32	3	156	Prop.	0.67	[0.00,	1.00]	96.0	NA	3	140	Prop.	0.93	[0.00,	1.00]	85.0	NA
≥20/40	4	238	Prop.	0.83	[0.00,	1.00]	95.0	NA	2	80	Prop.	0.94	[0.81,	1.00]	82.0	NA
근거리																
LogMAR	27	1,548	Mean	0.15	[0.11,	0.19]	98.8	NA	17	736	Mean	0.14	[0.08,	0.20]	98.5	NA
≥20/20	7	733	Prop.	0.42	[0.00,	1.00]	96.0	NA	4	314	Prop.	0.39	[0.00,	0.51]	80.0	NA
≥20/32	4	257	Prop.	0.85	[0.78,	1.00]	60.0	NA	4	314	Prop.	0.93	[0.88,	1.00]	68.0	NA
≥20/40	6	702	Prop.	0.97	[0.95,	1.00]	76.0	NA	4	314	Prop.	0.97	[0.96,	1.00]	1.0	NA

2.2.1.1. 비교군 연구

본 평가에서는 연구설계를 구분하여 비교군이 단초점 인공수정체인 결과만 비교군 연구에서 제시하였다. RCT, Non-RCT 연구에서 다초점 인공수정체간의 비교 결과들은 단일군 연구에서 정리하였다. 따라서 Gundersen (2016)의 연구에서는 회절형 삼중초점과 이중초점 인공수정체간을 비교한 경우로 본 평가에서는 별도 기술하지 않았다.

RCT 연구에서 단초점 인공수정체 대비 다초점 인공수정체는 단안기준에서 중간거리, 근거리 나안시력을 유의하게 개선시켰다. 그러나 I^2 가 40% 이상으로 결과해석에 주의가 필요하다.

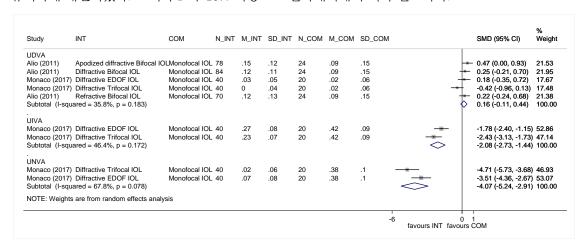
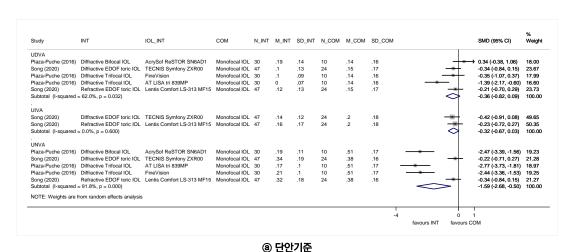



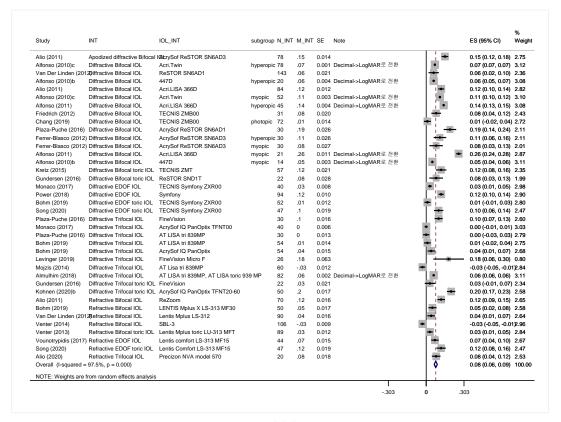
그림 3.11 IOL: 나안시력(RCT, 단안)

Non-RCT 연구에서 단초점 인공수정체 대비 다초점 인공수정체는 단안기준에서 근거리 나안시력을 유의하게 개선시켰다. 원거리, 중간거리에서도 단초점 인공수정체에 비해 시력개선의 경향성은 나타났으나 통계적으로 유의한 차이를 보이지는 않았다. 원거리, 근거리 나안시력 I^2 가 60% 이상으로 결과해석에 주의가 필요하다.

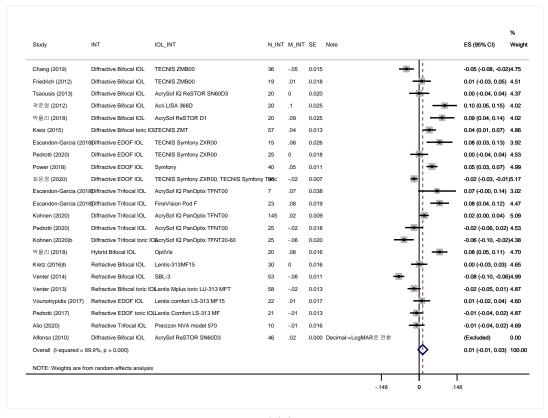
양안기준 다초점 인공수정체와 단초점 인공수정체를 비교한 Pedrotti (2017)의 연구에서는 중간거리 나안시력에서 유의한 개선이 확인되었으며 근거리, 원거리 시력에서는 인공수정체 군 간 유의한 차이가 보고되지 않았다.

Study INT IOL_INT COM N_INT M_INT SD_INT N_COM M_COM SD_COM SMD (95% CI) Weight UDVA Pedrotti (2017) Refractive EDOF toric IOL Lentis Comfort LS-313 MF Monofocal IOL 21 ..01 ..06 21 ..02 ..05 -0.53 (-1.15, 0.08) 100.00 -0.53 (-1.15, 0

® 양안기준


그림 3.12 IOL: 나안시력(Non-RCT)

이외 비교군(RCT, Non-RCT)연구에서 나안시력을 범주형 형태로 보고한 연구는 없었다.


2.2.1.2. 단일군 연구

■ 원거리 나인시력

다초점 인공수정체 시술 이후 원거리 나안시력을 보고한 연구들에서의 결과는 아래 그림과 같다. 시술 후 단안기준을 측정된 시력은 0.08 LogMAR (95% CI: 0.06, 0.09)이었으며 양안기준에서는 0.01 LogMAR (95% CI: -0.01, 0.03)으로 시술 후 임상적으로 우수한 시력을 달성하였다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 매우 높은 수준으로 결과 해석시 주의가 필요하다.

@ 단안기준

ⓑ 양안기준

그림 3.13 IOL: 나안시력(단일군, 원거리)

전체 분석결과 나타난 문헌 간 이질성의 요인을 탐색하기 위하여 연구특성에 따라 하위군 분석한 결과는 아래 표와 같다. 하위군 분석결과 문헌 간 이질성이 감소하는 요인을 확인할 수 없었다.

표 3.11 IOL: 나안시력(단일군, 원거리) 하위군 분석

	분류	문헌수	ES	95%	Cl	l ² (%)
단안기준						
101 77	회절형	29	0.081	0.067	0.095	97.8
IOL 구조	굴절형	8	0.059	0.019	0.099	94.1
	이중초점	21	0.089	0.072	0.107	98.1
IOL 초점	삼중초점	11	0.053	0.023	0.083	96.0
	연속초점	6	0.074	0.034	0.114	93.7
	유럽	32	0.080	0.065	0.094	97.6
국가	아시아	4	0.077	0.041	0.114	86.9
	기타	1	-0.030	-0.047	-0.013	-
양안기준						
101 77	회절형	15	0.023	0.000	0.045	88.0
IOL 구조	굴절형	6	-0.019	-0.049	0.010	85.2
	이중초점	10	0.015	-0.023	0.053	93.2
IOL 초점	삼중초점	6	0.010	-0.026	0.046	85.4
	연속초점	6	0.015	-0.014	0.045	87.0
	유럽	15	0.012	-0.006	0.031	79.1
국가	아시아	5	0.038	-0.020	0.095	94.7
	기타	2	-0.030	-0.128	0.068	98.0

다초점 인공수정체 시술 국가, 다초점 인공수정체 구조, 인공수정체 초점유형이 원거리 나안시력에 미치는 영향을 파악하기 위해 메타회귀 분석을 시행한 결과 해당 변수들은 유의한 영향을 미치지 않았다.

표 3.12 IOL: 나안시력(단일군, 원거리) 메타회귀 분석결과

기저특성	β	SE	t	P⟩t	95%	CI	l ² (%)
단안기준							
굴절형	- 0.023	0.026	- 0.910	0.366	- 0.075	0.028	94.1
삼중초점	- 0.035	0.024	- 1.480	0.148	- 0.084	0.013	96.0
연속초점	- 0.016	0.029	- 0.530	0.896	- 0.075	0.044	93.7
아시아	0.004	0.032	0.120	0.903	- 0.060	0.068	86.9
기타	- 0.110	0.063	- 1.760	0.086	- 0.237	0.017	_
양안기준							
굴절형	0.057	0.046	1.230	0.230	- 0.039	0.153	85.2
삼중초점	- 0.004	0.027	- 0.150	0.886	- 0.060	0.053	85.4
연속초점	0.002	0.027	0.070	0.943	- 0.054	0.057	87.0
아시아	0.023	0.026	0.880	0.386	- 0.030	0.076	94.7
기타	- 0.043	0.036	- 1.190	0.244	- 0.117	0.031	98.0

다초점 인공수정체 시술 이후 원거리 나안시력을 스넬렌 시력으로 보고한 연구들에서의 결과는 아래와 같다. 시술 후 단안기준을 측정된 시력이 '20/20 or better'을 달성한 경우는 61% (95% CI: 0.44, 1.00)이었으며 양안기준에서는 75% (95% CI: 0.60, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 심각한 수준으로 결과 해석시 이에 대한 주의가 필요해 보인다.

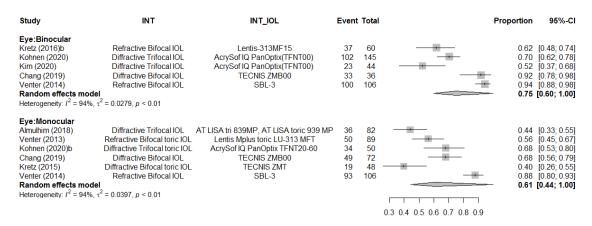


그림 3.14 IOL: 나안시력(단일군, 원거리, 20/20 or better)

시술 후 단안기준을 측정된 원거리 나안시력이 '20/25 or better'을 달성한 경우는 82% (95% CI: 0.76, 1.00)이었으며 양안기준에서는 88% (95% CI: 0.83, 1.00)이었다. 다만 해당 양적합성 결과에서 단안기준 I^2 가 70% 수준으로 연구들 간의 이질성이 상당한 수준으로 결과 해석시 주의가 필요하다.

Study	INT	INT_IOL	Event	Total		Proportion 95%-CI
Eye:Monocular Kretz (2016) Almulhim (2018) Venter (2013) Kohnen (2020)b Friedrich (2012) Chang (2019) Kretz (2015) Random effects mod Heterogeneity: 1² = 72%		AT LISA tri 839MP AT LISA tri 839MP, AT LISA tri 839MP, AT LISA trice 939 MP Lentis Mplus toric LU-313 MFT AcrySof IQ PanOptix TFNT20-60 TECNIS ZMB00 TECNIS ZMB00 TECNIS ZMT	91 62 79 43 24 60 30	100 82 89 50 31 72 48		0.91 [0.84; 0.96] 0.76 [0.65; 0.84] 0.89 [0.80; 0.94] 0.86 [0.73; 0.94] 0.77 [0.59; 0.90] 0.83 [0.73; 0.91] 0.62 [0.47; 0.76] 0.82 [0.76; 1.00]
Eye:Binocular Kretz (2016)b Kohnen (2020) Friedrich (2012) Kim (2020) Levinger (2019) Chang (2019) Random effects moo Heterogeneity: $J^2 = 40\%$		Lentis-313MF15 AcrySofQ PanOptix(TFNT00) TECNIS ZMB00 AcrySof IQ PanOptix(TFNT00) FineVision Micro F TECNIS ZMB00	47 128 18 35 24 33	60 145 19 44 26 36	0.5 0.6 0.7 0.8 0.9	0.78 [0.66; 0.88] 0.88 [0.82; 0.93] - 0.95 [0.74; 1.00] 0.80 [0.65; 0.90] - 0.92 [0.75; 0.99] 0.92 [0.78; 0.98] - 0.88 [0.83; 1.00]

그림 3.15 IOL: 나안시력(단일군, 원거리, 20/25 or better)

시술 후 단안기준을 측정된 원거리 나안시력이 '20/30 or better'을 달성한 경우는 99% (95% CI: 0.97, 1.00)이었으며 양안기준의 1편의 연구에서는 100% (95% CI: 0.95, 1.00)이었다. 다만 '20/30 or better' 기준으로 보고한 문헌이 2편밖에 되지 않는다.

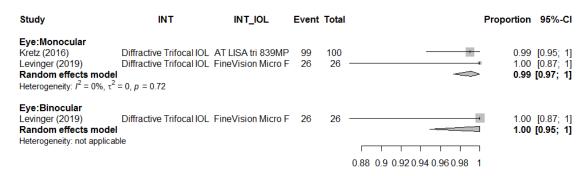
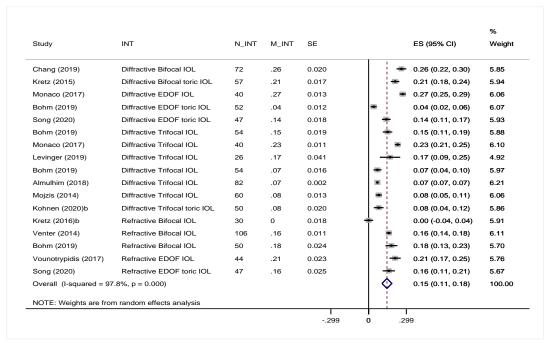


그림 3.16 IOL: 나안시력(단일군, 원거리, 20/30 or better)

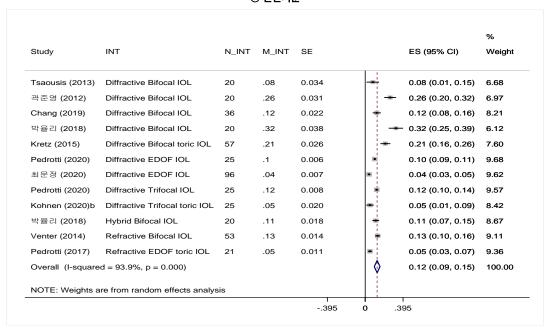
시술 후 단안기준을 측정된 원거리 나안시력이 '20/32 or better'을 달성한 경우는 95% (95% CI: 0.91, 1.00)이었으며 양안기준에서는 98% (95% CI: 0.95, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 50% 수준으로 연구들 간의 이질성이 상당한 수준으로 결과 해석시 주의가 필요하다.

Study	INT	INT_IOL	Event Total		Pro	portion	95%-CI
Eye:Binocular Kretz (2016)b Kohnen (2020) Kim (2020) Chang (2019) Random effects mod Heterogeneity: I ² = 55%,		Lentis-313MF15 AcrySof IQ PanOptix(TFNT00) AcrySof IQ PanOptix(TFNT00) TECNIS ZMB00	60 138 42 36	60 145 44 36	——————————————————————————————————————	0.95 [0 0.95 [0 1.00 [0	0.94; 1.00] 0.90; 0.98] 0.85; 0.99] 0.90; 1.00] 0.95; 1.00]
Eye:Monocular Venter (2013) Kohnen (2020)b Chang (2019) Kretz (2015) Random effects mod Heterogeneity: $J^2 = 49\%$.	Diffractive Bifocal IOL Diffractive Bifocal toric IOL lel	Lentis Mplus toric LU-313 MFT AcrySof IQ PanOptix TFNT20-60 TECNIS ZMB00 TECNIS ZMT	87 47 69 41	89 50 72 48	0.75 0.8 0.85 0.9 0.95 1	0.94 [0 0.96 [0 0.85 [0	0.92; 1.00] 0.83; 0.99] 0.88; 0.99] 0.72; 0.94] 0.91; 1.00]

그림 3.17 IOL: 나안시력(단일군, 원거리, 20/32 or better)


시술 후 단안기준을 측정된 원거리 나안시력이 '20/40 or better'을 달성한 경우는 100% (95% CI: 0.99, 1.00)이었으며 양안기준에서는 99% (95% CI: 0.98, 1.00)이었다.

Study	INT	INT_IOL		Total		Proportion 95%-CI
Eye:Binocular Kohnen (2020) Kim (2020) Random effects mode Heterogeneity: $I^2 = 0\%$, τ		AcrySof IQ PanOptix(TFNT00) AcrySof IQ PanOptix(TFNT00)	144 44	145 44	—————————————————————————————————————	0.99 [0.96; 1.00] 1.00 [0.92; 1.00] 0.99 [0.98; 1.00]
Eye:Monocular Almulhim (2018) Venter (2013) Kohnen (2020)b Chang (2019) Chang (2019) Kretz (2015) Random effects mode		AT LISA tri 839MP, AT LISA toric 939 MP Lentis Mplus toric LU-313 MFT AcrySof IQ PanOptix TFNT20-60 TECNIS ZMB00 TECNIS ZMB00 TECNIS ZMT	82 89 50 71 71 44	82 89 50 72 72 48	——————————————————————————————————————	1.00 [0.96; 1.00] 1.00 [0.96; 1.00] 1.00 [0.93; 1.00] 0.99 [0.93; 1.00] 0.99 [0.93; 1.00] 0.92 [0.80; 0.98] 1.00 [0.99; 1.00]
Heterogeneity: $I^2 = 10\%$,	$\tau^2 = < 0.0001, p = 0.35$				0.85 0.9 0.95 1	


그림 3.18 IOL: 나안시력(단일군, 원거리, 20/40 or better)

■ 중간거리 나안시력

다초점 인공수정체 시술 이후 중간거리 나안시력은 단안기준 0.15 LogMAR (95% CI: 0.11, 0.18)이었으며 양안기준에서는 0.12 LogMAR (95% CI: 0.09, 0.15)으로 시술 후 임상적으로 우수한 시력을 달성하였다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 이질성이 매우 높은 수준으로 결과 해석시 이에 대한 주의가 필요해 보인다.

@ 단안기준

® 양안기준

그림 3.19 IOL: 나안시력(단일군, 중간거리)

전체 분석결과 나타난 문헌 간 이질성의 요인을 탐색하기 위하여 연구특성에 따라 하위군 분석한 결과는 아래 표와 같다. 하위군 분석결과 문헌 간 이질성을 설명하는 요인을 확인할 수 없었다.

표 3.13 IOL: 나안시력(단일군, 중간거리) 하위군 분석

분류		문헌수	ES	95%	S CI	l ² (%)		
단안기준								
101 7 7	회절형	12	0.147	0.098	0.196	98.2		
IOL 구조	굴절형	5	0.141	0.070	0.213	94.7		
	이중초점	5	0.162	0.083	0.240	96.4		
IOL 초점	삼중초점	7	0.120	0.066	0.173	97.3		
	연속초점	5	0.164	0.068	0.260	97.7		
	유럽	11	0.138	0.081	0.195	97.3		
국가	아시아	4	0.159	0.080	0.238	96.7		
	기타	1	0.160	0.139	0.192	-		
양안기준								
101 77	회절형	9	0.136	0.098	0.174	94.9		
IOL 구조	굴절형	2	0.090	0.011	0.168	95.2		
	이중초점	7	0.171	0.121	0.222	88.2		
IOL 초점	삼중초점	2	0.087	0.094	0.154	90.5		
	연속초점	3	0.064	0.022	0.106	95.6		
	유럽	6	0.099	0.067	0.131	90.2		
국가	아시아	5	0.165	0.079	0.251	96.3		
	기타	1	0.130	0.103	0.157	_		

다초점 인공수정체 시술 대상국가, 다초점 인공수정체 구조, 인공수정체 초점유형이 중간거리 나안시력에 미치는 영향을 파악하기 위해 메타회귀 분석을 시행한 결과 연속초점 인공수정체의 경우 이중초점 인공수정체에 비해 중간거리 나안시력이 통계적으로 유의하게 좋은 것으로 나타났다.

표 3.14 IOL: 나안시력(단일군, 중간거리) 메타회귀 분석결과

기저특성	β	SE	t	P⟩t	95% CI		l ² (%)
단안기준							
굴절형	- 0.006	0.044	- 0.130	0.901	- 0.097	0.086	94.7
삼중초점	- 0.033	0.051	- 0.640	0.529	- 0.139	0.074	97.3
연속초점	0.002	0.053	0.040	0.971	- 0.109	0.113	97.7
아시아	0.020	0.046	0.440	0.662	- 0.076	0.117	96.7
기타	0.022	0.087	0.250	0.804	- 0.161	0.204	_
양안기준							
굴절형	- 0.031	0.094	- 0.330	0.749	- 0.235	0.173	95.2
삼중초점	- 0.085	0.055	- 1.550	0.147	- 0.205	0.035	90.5
연속초점	- 0.108	0.047	- 2.300	0.040	- 0.211	- 0.006	95.6
아시아	0.062	0.052	1.190	0.257	- 0.052	0.177	96.3
기타	0.029	0.092	0.320	0.758	- 0.171	0.229	_

다초점 인공수정체 시술 이후 중간거리 나안시력을 스넬렌 시력척도로 보고한 연구들에서의 결과는 이래와 같다.

시술 후 단안기준을 측정된 중간거리 나안시력이 '20/20 or better'을 달성한 경우는 25% (95% CI: 0.00, 1.00)이었으며 양안기준에서는 47% (95% CI: 0.00, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 심각한 수준으로 결과 해석시 주의가 요구된다.



그림 3.20 IOL: 나안시력(단일군, 중간거리, 20/20 or better)

시술 후 단안기준을 측정된 중간거리 나안시력이 '20/25 or better'을 달성한 경우는 58% (95% CI: 0.00, 1.00)이었으며 양안기준에서는 72% (95% CI: 0.54, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 심각한 수준으로 결과 해석시 주의가 요구된다.

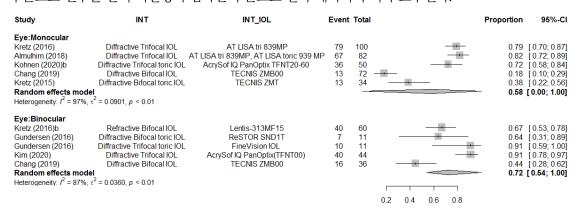


그림 3.21 IOL: 나안시력(단일군, 중간거리, 20/25 or better)

시술 후 단안기준을 측정된 중간거리 나안시력이 '20/30 or better'을 달성한 경우는 87% (95% CI: 0.74, 1.00)이었으며 양안기준에서는 91% (95% CI: 0.85, 0.96)이었다.

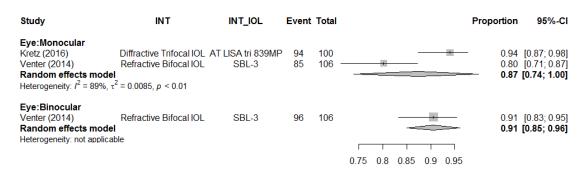


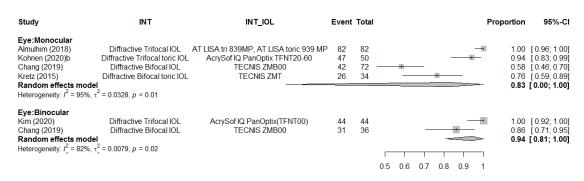
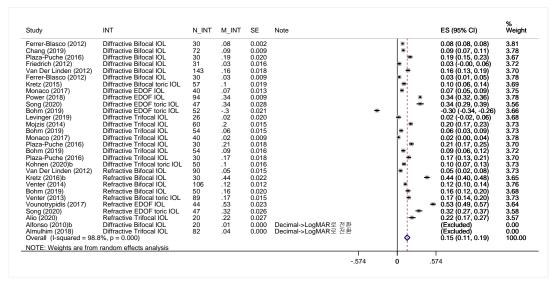
그림 3.22 IOL: 나안시력(단일군, 중간거리, 20/30 or better)

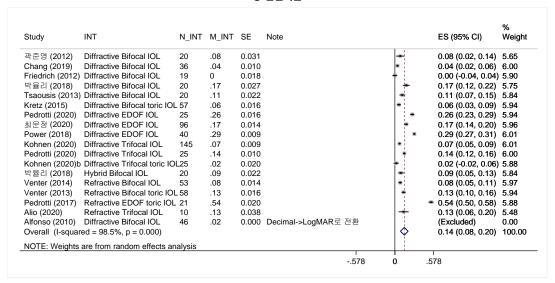
시술 후 단안기준을 측정된 중간거리 나안시력이 '20/32 or better'을 달성한 경우는 67% (95% CI: 0.00, 1.00)이었으며 양안기준에서는 93% (95% CI: 0.00, 1.00)이었다.

Study	INT	INT_IOL	Event	Total	Pro	oportion	95%-CI
Eye:Binocular Kretz (2016)b Kim (2020) Chang (2019) Random effects mo Heterogeneity: $I^2 = 859$	Refractive Bifocal IOL Diffractive Trifocal IOL Diffractive Bifocal IOL del $\%$, $\tau^2 = 0.0052$, $p < 0.01$	Lentis-313MF15 AcrySof IQ PanOptix(TFNT00) TECNIS ZMB00	60 42 27	60 44 36		0.95 0.75	[0.94; 1.00] [0.85; 0.99] [0.58; 0.88] [0.00; 1.00]
Eye:Monocular Kohnen (2020)b Chang (2019) Kretz (2015) Random effects mo Heterogeneity: $I^2 = 969$	Diffractive Bifocal IOL Diffractive Bifocal toric IOL	AcrySof IQ PanOptix TFNT20-60 TECNIS ZMB00 TECNIS ZMT	45 29 24	50 72 34	0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	0.40 0.71	[0.78; 0.97] [0.29; 0.53] [0.53; 0.85] [0.00; 1.00]

그림 3.23 IOL: 나안시력(단일군, 중간거리, 20/32 or better)

시술 후 단안기준을 측정된 시력이 '20/40 or better'을 달성한 경우는 83% (95% CI: 0.00, 1.00)이었으며 양안기준에서는 94% (95% CI: 0.81, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 심가한 수준으로 결과 해석시 주의가 필요하다.


그림 3.24 IOL: 나안시력(단일군, 중간거리, 20/40 or better)

■ 근거리 나안시력

다초점 인공수정체 시술 이후 근거리 나안시력은 단안기준 0.15 LogMAR (95% CI: 0.11, 0.19)이었으며 양안기준에서는 0.14 LogMAR (95% CI: 0.08, 0.20)으로 시술 후 임상적으로 우수한 시력을 달성하였다. 다만 해당 양적합성 결과에서 I²가 90% 수준으로 이질성이 매우 높은 수준으로 결과 해석시 주의가 요구된다.

@ 단안기준

ⓑ 양안기준

그림 3.25 IOL: 나안시력(단일군, 근거리)

전체 분석결과 나타난 문헌 간 이질성의 요인을 탐색하기 위하여 연구특성에 따라 하위군 분석한 결과는 아래 표와 같다. 하위군 분석결과 문헌 간 이질성을 설명하는 요인을 확인할 수 없었다.

표 3.15 IOL: 나안시력(단일군, 근거리) 하위군 분석

분류		문헌수	ES	95%	95% CI			
단안기준								
101.77	회절형	19	0.105	0.062	0.148	98.8		
IOL 구조	굴절형	8	0.250	0.143	0.358	98.6		
	이중초점	13	0.133	0.096	0.170	97.4		
IOL 초점	삼중초점	9	0.120	0.067	0.173	96.1		
	연속초점	6	0.216	0.010	0.423	99.6		
	유럽	22	0.141	0.094	0.188	99.0		
국가	아시아	4	0.191	0.056	0.326	98.1		
	기타	1	0.120	0.097	0.143	-		
양안기준								
101.77	회절형	13	0.118	0.060	0.175	98.1		
IOL 구조	굴절형	4	0.220	0.008	0.433	99.2		
	이중초점	10	0.082	0.052	0.113	86.0		
IOL 초점	삼중초점	4	0.088	0.034	0.142	93.0		
	연속초점	4	0.314	0.191	0.437	98.7		
	유럽	10	0.168	0.117	0.223	98.8		
국가	아시아	5	0.110	0.045	0.174	93.9		
	기타	2	0.073	0.058	0.088	0		

다초점 인공수정체 시술 대상국가, 다초점 인공수정체 구조, 인공수정체 초점유형이 근거리 나안시력에 미치는 영향을 파악하기 위해 메타회귀 분석을 시행한 결과 단안기준 분석에서 회절형 인공수정체에 비해 굴절형 인공수정체를 받은 환자들에서 근거리 나안시력이 더 낮은 것으로 나타났다. 양안기준 분석에서 이중초점 인공수정체에 비해 연속초점 인공수정체에서 근거리 나안시력이 더 낮은 것으로 나타났다. 이외 변수들은 유의한 영향을 미치지 않았다.

표 3.16 IOL: 나안시력(단일군, 근거리) 메타회귀 분석결과

기저특성	β	SE	t	P⟩t	95%	CI	l ² (%)
단안기준							
굴절형	0.151	0.060	2.500	0.018	0.028	0.273	98.6
삼중초점	- 0.003	0.069	- 0.050	0.961	- 0.143	0.137	96.1
연속초점	0.092	0.078	1.180	0.249	- 0.068	0.251	99.6
아시아	0.056	0.088	0.640	0.529	- 0.124	0.236	98.1
기타	- 0.015	0.165	- 0.090	0.926	- 0.352	0.321	_
양안기준							
굴절형	- 0.025	0.133	- 0.190	0.853	- 0.304	0.254	99.2
삼중초점	0.007	0.052	0.130	0.899	- 0.102	0.116	93.0
연속초점	0.231	0.051	4.510	0.000	0.124	0.339	98.7
아시아	- 0.053	0.072	- 0.740	0.468	- 0.204	0.097	93.9
기타	- 0.088	0.101	- 0.870	0.394	- 0.300	0.124	0

다초점 인공수정체 시술 이후 근거리 나안시력을 스넬렌 시력척도로 보고한 연구들에서의 결과는 아래와 같다.

시술 후 단안기준을 측정된 근거리 나안시력이 '20/20 or better'을 달성한 경우는 42% (95% CI: 0.00, 1.00)이었으며 양안기준에서는 39% (95% CI: 0.00, 0.51)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 문헌들 간의 이질성이 심각한 수준으로 결과 해석시 주의가 요구된다.

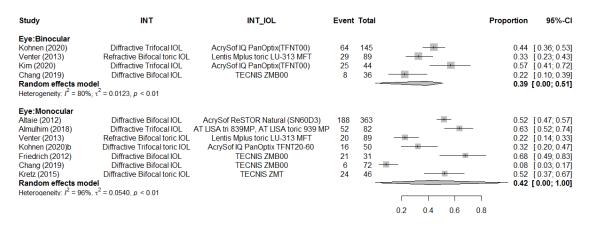


그림 3.26 IOL: 나안시력(단일군, 근거리, 20/20 or better)

시술 후 단안기준을 측정된 시력이 '20/25 or better'을 달성한 경우는 74% (95% CI: 0.60, 1.00)이었으며 양안기준에서는 77% (95% CI: 0.64, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 심각한 수준으로 결과 해석시 주의가 요구된다.

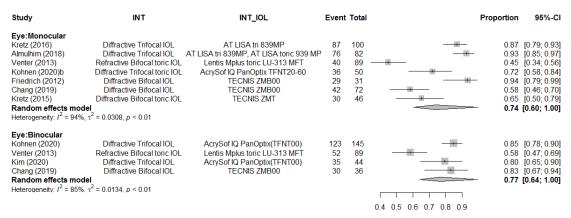


그림 3.27 IOL: 나안시력(단일군, 근거리, 20/25 or better)

시술 후 단안기준을 측정된 근거리 나안시력이 '20/30 or better'을 달성한 경우는 96% (95% CI: 0.90, 1.00)이었으며 양안기준에서는 99% (95% CI: 0.96, 1.00)이었다. 단안기준 연구들 간의 이질성이 80% 수준으로 중대하여 결과 해석시 주의가 요구된다.

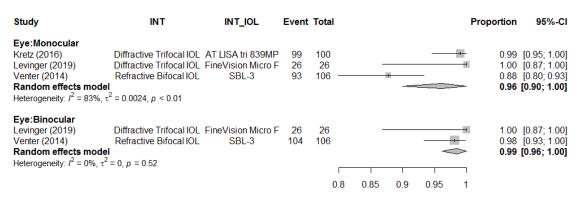


그림 3.28 IOL: 나안시력(단일군, 근거리, 20/30 or better)

시술 후 단안기준을 측정된 근거리 나안시력이 '20/32 or better'을 달성한 경우는 85% (95% CI: 0.77, 1.00)이었으며 양안기준에서는 93% (95% CI: 0.88, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 $60\sim70\%$ 수준으로 연구들 간의 이질성이 중대한 수준으로 결과 해석시 주의가 요구된다.

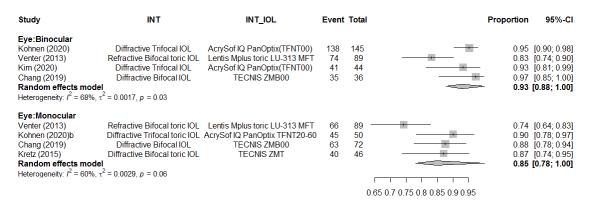


그림 3.29 IOL: 나안시력(단일군, 근거리, 20/32 or better)

시술 후 단안기준을 측정된 근거리 나안시력이 '20/40 or better'을 달성한 경우는 97% (95% CI: 0.95, 1.00)이었으며 양안기준에서는 97% (95% CI: 0.96, 1.00)이었다. 다만 단안기준 양적합성 결과에서 I^2 가 80% 수준으로 연구들 간의 이질성이 중대한 수준으로 결과 해석시 주의가 요구된다.

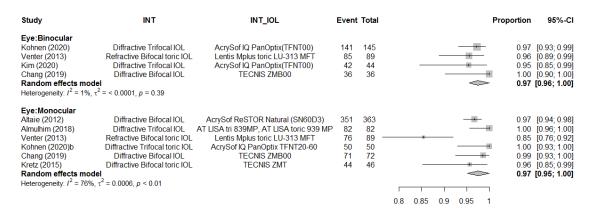


그림 3.30 IOL: 나안시력(단일군, 근거리, 20/40 or better)

2.2.2. 교정시력

본 평가에서는 연구설계를 구분하여 비교군이 단초점 인공수정체인 결과만 비교군 연구에서 제시하였다. RCT, Non-RCT 연구에서 다초점 인공수정체간의 비교 결과들은 단일군 연구에서 함께 결과를 정리하였다.

표 3.17 IOL: 교정시력 요약표

결과지표	단안기준									양안기준						
걸박시표	합성수	안구수		결과(95% CI)			l ²	유의성	합성수	안구수		결과(9	5% CI)		l ²	유의성
RCT																
중간거리(LogMAR)	2	120	SMD	-1.67	[-2.11,	-1.23]	0.0					Not av	ailable			
근거리(LogMAR)	2	120	SMD	-4.07	[-5.84,	-2.29]	85.8					Not av	ailable			
Non-RCT																
중간거리(LogMAR)	2	142	SMD	-0.15	[-0.50,	0.19]	0.0	NS	1	42	SMD	-0.49	[-1.11,	0.12]	ı	NA
근거리(LogMAR)	5	262	SMD	-1.72	[-3.22,	-0.21]	95.5		1	42	SMD	0.38	[-0.23,	1.00]	_	NA
단일군연구																
중간거리																
LogMAR	14	746	Mean	0.11	[0.07,	0.15]	96.8	NA	10	406	Mean	0.11	[0.06,	0.16]	98.7	NA
≥20/20	6	332	Prop.	0.34	[0.00,	0.58]	97.0	NA	2	181	Prop.	0.25	[0.00,	1.00]	98.0	NA
≥20/32	6	332	Prop.	0.79	[0.64,	1.00]	97.0	NA	2	181	Prop.	0.72	[0.36,	1.00]	94.0	NA
≥20/40	6	332	Prop.	0.84	[0.73,	1.00]	96.0	NA	2	181	Prop.	0.87	[0.66,	1.00]	87.0	NA
근거리																
LogMAR	23	1,135	Mean	0.12	[0.09,	0.15]	98.3	NA	12	394	Mean	0.08	[0.03,	0.13]	98.1	NA
≥20/20	6	332	Prop.	0.33	[0.00,	0.54]	97.0	NA	1	36	Prop.	0.28	[0.13,	0.42]	-	NA
≥20/32	6	332	Prop.	0.83	[0.73,	1.00]	90.0	NA	1	36	Prop.	0.97	[0.92,	1.00]	ı	NA
≥20/40	6	332	Prop.	0.98	[0.95,	1.00]	77.0	NA	1	36	Prop.	1.00	[0.96,	1.00]	ı	NA

2.2.2.1. 비교군 연구

RCT 연구에서 단초점 인공수정체 대비 다초점 인공수정체는 단안기준에서 중간거리, 근거리 교정시력을 유의하게 개선시켰다. 근거리 교정시력의 경우 I^2 가 80% 이상의 연구들 간 높은 수준의 이질성을 보여 결과해석에 주의가 필요하다. Gundersen (2016)의 연구에서는 회절형 삼중초점 인공수정체와 이중초점 인공수정체를 비교한 경우로 본 평가에서는 별도 기술하지 않았다.

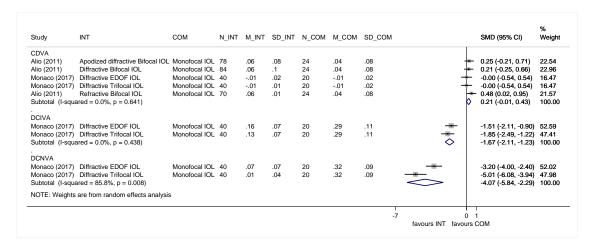
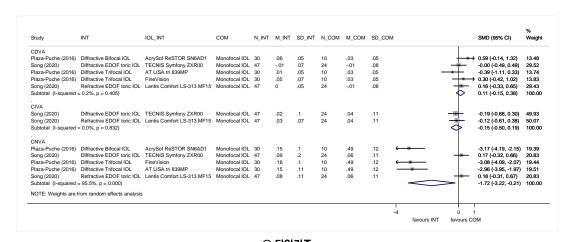
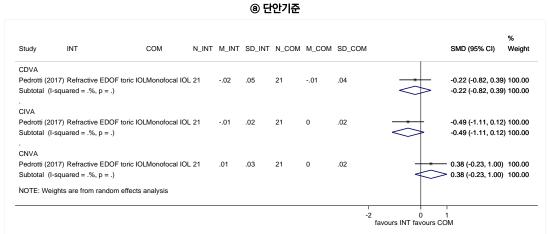
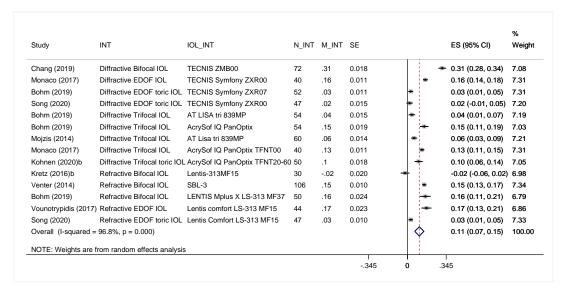




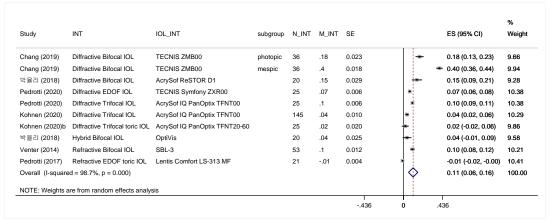
그림 3.31 IOL: 교정시력(RCT, 단안)

Non-RCT 연구에서 단초점 인공수정체 대비 다초점 인공수정체는 단안, 양안기준 모두에서 중간거리 교정시력에서 유의한 차이를 보이지 않았다. 단안기준으로 측정된 근거리 교정시력의 경우 다초점 인공수정체에서의 시력이 단초점 인공수정체에 비해 유의하게 좋은 것으로 나타났다. 다만 근거리 교정시력의 경우 I²가 90% 이상의 연구들 간 높은 수준의 이질성을 보여 결과해석에 주의가 필요하다.

ⓑ 양안기준


그림 3.32 IOL: 교정시력(단초점, NRCT)

그 외 비교군(RCT, Non-RCT)연구에서 교정시력을 범주형 형태로 보고한 연구는 없었다.


2.2.2.2. 단일군 연구

■ 중간거리 교정시력

다초점 인공수정체 시술 이후 중간거리 교정시력은 단안기준 0.11 LogMAR (95% CI: 0.07, 0.15)이었으며 양안기준에서는 0.11 LogMAR (95% CI: 0.06, 0.16)으로 시술 후 임상적으로 우수한 시력을 달성하였다. 다만 해당 양적합성 결과에서 I²가 90% 수준으로 이질성이 매우 높은 수준으로 결과 해석시 주의가 필요하다.

@ 단안기준

ⓑ 양안기준

그림 3.33 IOL: 교정시력(단일군, 중간거리)

다초점 인공수정체 시술 이후 중간거리 교정시력을 스넬렌 시력척도로 보고한 연구들에서의 결과는 다음과 같다.

시술 후 단안기준을 측정된 중간거리 교정시력이 '20/20 or better'을 달성한 경우는 34% (95% CI: 0.00, 0.58)이었으며 양안기준에서는 25% (95% CI: 0.00, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 심각한 수준으로 결과 해석시 주의가 요구된다.

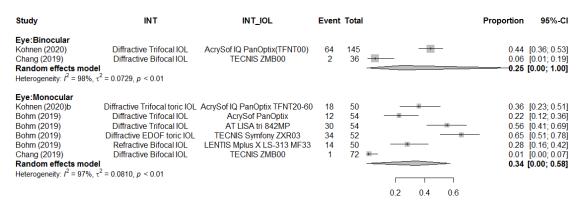


그림 3.34 IOL: 교정시력(단일군, 중간거리, 20/20 or better)

시술 후 단안기준을 측정된 중간거리 교정시력이 '20/25 or better'을 달성한 경우는 64% (95% CI: 0.00, 1.00)이었으며 양안기준에서는 62% (95% CI: 0.00, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 가의 이질성이 심각한 수준으로 결과 해석시 주의가 필요하다.

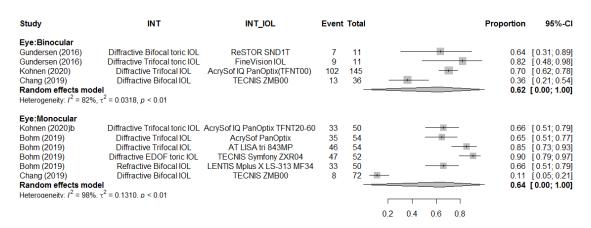


그림 3.35 IOL: 교정시력(단일군, 중간거리, 20/25 or better)

'20/32 or better'의 중간거리 교정시력을 달성한 경우는 단안기준 79% (95% CI: 0.64, 1.00)이었으며 양안기준에서는 72% (95% CI: 0.36, 1.00)이었다. 다만 해당 양적합성 결과에서 I²가 90% 수준으로 연구들 간의 이질성이 심각한 수준으로 결과해석시 주의가 필요하다.

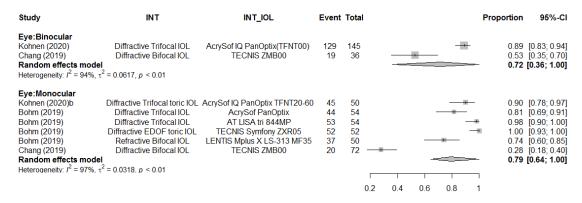
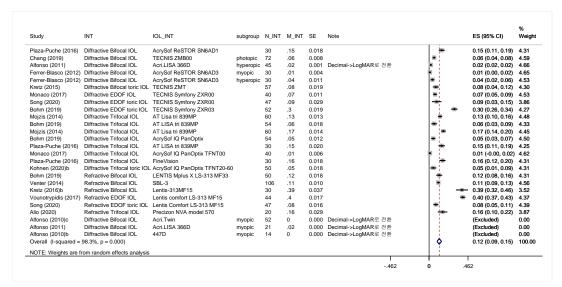
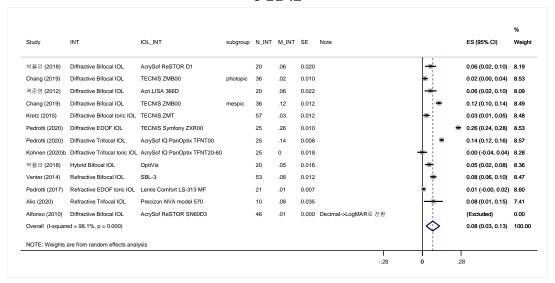


그림 3.36 IOL: 교정시력(단일군, 중간거리, 20/32 or better)


 $^{\circ}20/40$ or better'의 중간거리 교정시력을 달성한 경우는 84% (95% CI: 0.73, 1.00)이었으며 양안기준에서는 87% (95% CI: 0.66, 1.00)이었다. 다만 해당 양적합성 결과에서 I^{2} 가 90% 수준으로 연구들 간의 이질성이 심각한 수준으로 결과 해석시 주의가 필요하다.

Study	INT	INT_IOL	Event	Total		Proportion	95%-CI
Eye:Binocular							
Kohnen (2020)	Diffractive Trifocal IOL	AcrySof IQ PanOptix(TFNT00)	139	145			[0.91; 0.98]
Chang (2019)	Diffractive Bifocal IOL	TECNIS ZMB00	27	36	-		[0.58; 0.88]
Random effects model						0.87	[0.66; 1.00]
Heterogeneity: $I^2 = 87\%$, τ^2	= 0.0190, p < 0.01						
Eye:Monocular							
Kohnen (2020)b	Diffractive Trifocal toric IOL	AcrySof IQ PanOptix TFNT20-60	46	50		0.92	[0.81; 0.98]
Bohm (2019)	Diffractive Trifocal IOL	AcrySof PanOptix	47	54		0.87	[0.75; 0.95]
Bohm (2019)	Diffractive Trifocal IOL	AT LISA tri 845MP	53	54		0.98	[0.90; 1.00]
Bohm (2019)	Diffractive EDOF toric IOL	TECNIS Symfony ZXR06	52	52		1.00	[0.93; 1.00]
Bohm (2019)	Refractive Bifocal IOL	LENTIS Mplus X LS-313 MF36	42	50		0.84	[0.71; 0.93]
Chang (2019)	Diffractive Bifocal IOL	TECNIS ZMB00	28	72		0.39	[0.28; 0.51]
Random effects model						0.84	[0.73; 1.00]
Heterogeneity: $I^2 = 96\%$, τ^2	= 0.0177, p < 0.01						
				(0.3 0.4 0.5 0.6 0.7 0.8 0.9 1		


그림 3.37 IOL: 교정시력(단일군, 중간거리, 20/40 or better)

■ 근거리 교정시력

다초점 인공수정체 시술 이후 근거리 교정시력은 단안기준 0.12 LogMAR (95% CI: 0.09, 0.15)이었으며 양안기준에서는 0.08 LogMAR (95% CI: 0.03, 0.13)으로 시술 후 임상적으로 우수한 시력을 달성하였다. 다만 해당 양적합성 결과에서 I²가 90% 수준으로 이질성이 매우 높은 수준으로 결과 해석시 주의가 필요하다.

@ 단안기준

ⓑ 양안기준

그림 3.38 IOL: 교정시력(단일군, 근거리)

다초점 인공수정체 시술 이후 근거리 교정시력을 스넬렌 시력척도로 보고한 연구들에서의 결과는 아래와 같다.

시술 후 단안기준을 측정된 근거리 교정시력이 '20/20 or better'을 달성한 경우는 33% (95% CI: 0.00, 0.54)이었으며 양안기준에서는 28% (95% CI: 0.13, 0.42)이었다. 다만 단안기준 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 심각한 수준으로 결과 해석시 주의가 요구된다.

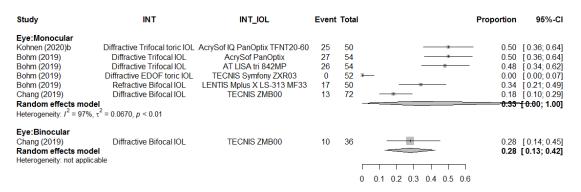


그림 3.39 IOL: 교정시력(단일군, 근거리, 20/20 or better)

시술 후 단안기준을 측정된 근거리 교정시력이 '20/25 or better'을 달성한 경우는 66% (95% CI: 0.00, 1.00)이었으며 양안기준에서는 89% (95% CI: 0.79, 0.99)이었다. 다만 단안기준 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 매우 심각한 수준으로 결과 해석시 주의가 필요하다.

Study	INT	INT_IOL	Event	Total	I	Proportion	95%-CI
Eye:Monocular Kohnen (2020)b Bohm (2019) Bohm (2019) Bohm (2019) Bohm (2019) Chang (2019) Random effects model Heterogeneity: I ² = 98%, τ ²	Diffractive Trifocal IOL Diffractive Trifocal IOL Diffractive EDOF toric IOL Refractive Bifocal IOL Diffractive Bifocal IOL	AcrySof IQ PanOptix TFNT20-60 AcrySof PanOptix AT LISA tri 843MP TECNIS Symfony ZXR04 LENTIS Mplus X LS-313 MF34 TECNIS ZMB00	40 49 42 5 30 55	50 54 54 52 50 72		- 0.91 0.78 0.10 0.60 0.76	F 1
Eye:Binocular Chang (2019) Random effects model Heterogeneity: not applicab	Diffractive Bifocal IOL	TECNIS ZMB00	32	36	0.2 0.4 0.6 0.8		[0.74; 0.97] [0.79 ; 0.99]

그림 3.40 IOL: 교정시력(단일군, 근거리, 20/25 or better)

근거리 교정시력 '20/30 or better'를 보고한 연구는 없었다.

근거리 교정시력 '20/32 or better'를 달성한 경우는 83% (95% CI: 0.73, 1.00)이었으며 양안기준에서는 97% (95% CI: 0.92, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 심각한 수준으로 결과 해석시 주의가 필요하다.

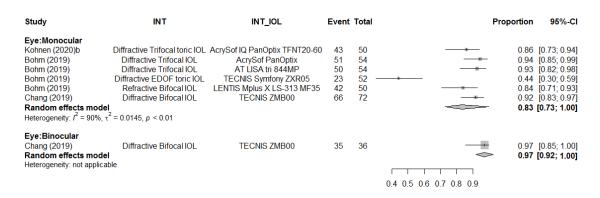


그림 3.41 IOL: 교정시력(단일군, 근거리, 20/32 or better)

근거리 교정시력 '20/40 or better'를 달성한 경우는 98% (95% CI: 0.95, 1.00)이었으며 양안기준에서는 100% (95% CI: 0.96, 1.00)이었다. 다만 단안기준 양적합성 결과에서 I^2 가 70% 수준으로 연구들 간의 이질성이 중대한 수준으로 결과 해석시 주의가 필요하다.

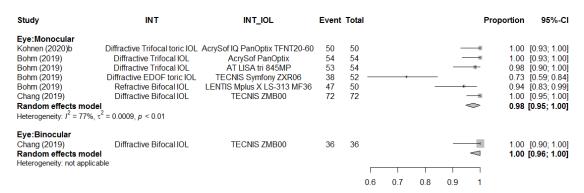


그림 3.42 IOL: 교정시력(단일군, 근거리, 20/40 or better)

2.2.3. 대비감도

2.2.3.1. 비교군 연구

비교군 연구에서 대비감도 관련 결과를 보고한 연구는 없었다.

2.2.3.2. 단일군 연구

대비감도는 눈검사에서 시력을 측정하기 위한 특수한 방법으로 낮은 대비감도를 가질 경우 희미한 가로등의 도로변을 따라 걷는 보행자를 보든데 곤란한 것은 물론 야간 운전시 문제를 갖게 된다. 이러한 저대비감도는 다초점 인공수정체 시술의 효과와 관련이 있을 수도 있다.

곽준영(2012)의 연구에서는 원거리에 맞춘 교정시력상태에서 주간시(photopic)와 박명시(mesopic)에서 1.5, 3, 6, 12, 18 cycle/degree마다 대비감도를 측정하였으며 우수한 대비감도를 보였다고 보고하였다. Kim (2020)은 눈부심(Glare)여부에 따라 주간시 최대교정 대비감도를 측정하였으며 해당 결과는 젊은 건강인의 수준과 유사하다고 보고하였다. Alio (2020)의 연구에서도 50-75세의 일반인구에서와 유사한 대비감도수준이라고 보고하였다. Kohnen (2020b)는 Toric 삼중초점 인공수정체에 대한 연구에서 측정된 대비감도 결과가 선행연구에서 보고된 비구면 인공수정체에 비해서는 다소 낮은 결과라고 보고하였다. Tan (2019)의 연구에서는 눈부심(Glare) 출처에 따라 측정된 대비감도의 유의한 감소가 있음을 보고하였다. Mojzis (2014)의 연구에서는 수술 후 1개월 시점과 6개월 시점의 대비감도를 비교하였으며 통계적으로 유의한 개선이 있었음을 보고하였다.

표 3.18 IOL: 대비감도(단일군 연구)

제1저자 (출판연도)	중재군	측정시점	N	결과변수	mean±SD		비고
				1 Fond	Photopic	1.38±0.32	
				1.5cpd	Mesopic	1.37±0.27	
				3cpd	Photopic	1.73±0.24	
				ЗСРИ	Mesopic	1.72±0.16	
곽준영 (2012) Diffractive Bifocal IOL	Diffractive	1개월	40안	6cpd	Photopic	1.75±0.21	
	Bifocal IOL	I 기열	40인	осра	Mesopic	1.63±0.14	
				12cpd	Photopic	1.38±0.18	
				12000	Mesopic	1.01±0.19	
				18cpd	Photopic	0.77±0.23	
				тосри	Mesopic	0.50±0.22	
				3 cpd	Photopic without glare	1.7±NA	
				3 сра	Photopic with glare	1.7±NA	
				Good	Photopic without glare	1.9±NA	
Kim	Diffractive	3개월	88안	6cpd	Photopic with glare	1.9±NA	
$(2020)^{1)}$	Trifocal IOL	3/11/2	00년	12and	Photopic without glare	1.6±NA	
				12cpd	Photopic with glare	1.5±NA	
				10	Photopic without glare	1.1±NA	
				18cpd	Photopic with glare	1.1±NA	
Kohnen	Diffractive	071101	20201		Photopic	1.40±0.40	
(2020b)	Trifocal toric	3개월	50안	Webar	Mesopic	0.88±0.14	

제1저자 (출판연도)	중재군	측정시점	N	결과변수	mean±SD)	비고
	IOL				Mesopic with glare	0.79±0.13	
					Photopic	1.68±NA	
				Sond	Photopic with glare	1.56±NA	
				3cpd	Mesopic	1.59±NA	
					Mesopic with glare	1.50±NA	
					Photopic	1.74±NA	
				6cpd	Photopic with glare	1.73±NA	
Alio Refractive Trifocal IOI				осра	Mesopic	1.67±NA	
	Refractive	12개월	20만		Mesopic with glare	1.53±NA	
	Trifocal IOL	12개월 	20인		Photopic	1.53±NA	
				10 and	Photopic with glare	1.47±NA	
				12cpd	Mesopic	1.28±NA	
					Mesopic with glare	1.06±NA	
				18cpd	Photopic	1.05±NA	
					Photopic with glare	0.95±NA	
					Mesopic	0.78±NA	
					Mesopic with glare	0.65±NA	
				Compl	with glare	1.43±NA	
Tan	Diffractive	071181	55안	6cpd	without glare	1.60±NA	~/0.001
(2019)	EDOF IOL	3개월	55인	10	with glare	1.18±NA	p(0.001
				12cpd	without glare	1.21±NA	
				1.5cpd	Photopic	1.57±0.13	
		1개월	60안	12cpd	Photopic	1.35±0.15	
Mojzis	Diffractive			18cpd	Photopic	0.73±0.22	
$(2014)^{2)}$	Trifocal IOL			1.5cpd	Photopic	1.62±0.15	p=0.034
		6개월	60안	12cpd	Photopic	1.40±0.16	p=0.019
				18cpd	Photopic	0.85±0.25	p=0.001

¹⁾ Photopic best corrected binocular contrast sensitivity 2) 1.5/3/6/12/18cpd 결과를 그래프로 표기, 추출가능한 값만 표기함

2.2.4. 시술만족도

표 3.19 IOL: 만족도 요약표

결과지표	합성수	환자수		결과(9	5% CI)		l ²	유의성
단일군 연구								
전반적 만족도	11	445	Prop.	0.92	[0.88,	0.96]	57.1	NA
시력 만족도								
원거리	6	198	Prop.	0.88	[0.74,	0.97]	82.1	NA
중간거리	6	221	Prop.	0.87	[0.82,	0.91]	0.0	NA
근거리	5	168	Prop.	0.90	[0.77,	0.98]	76.7	NA
동일 IOL 선택의향	8	488	Prop.	0.94	[0.88,	0.98]	74.0	NA
동일 IOL 타인 추천의향	9	375	Prop.	0.92	[0.83,	0.98]	83.8	NA

2.2.4.1. 비교군 연구

다초점 인공수정체의 시술만족도를 단초점 인공수정체와 비교한 연구는 없었다. 참고로 Van Der Linden (2012)의 연구는 회절형, 굴절형 이중초점 인공수정체의 만족도를 보고하였으나 두 유형의 인공수정체간에는 유의한 차이가 없었다(OR: 0.86, 95% CI: 0.50-1.47).

2.2.4.2. 단일군 연구

단일군 연구에서 다초점 인공수정체 시술 후 전반적으로 해당 시술에 만족한다고 한 환자가 92% (95% CI: 0.88, 0.96)이었다. 다만 해당 문헌들의 이질성이 상당한 수준으로 해석에 주의가 필요하다.

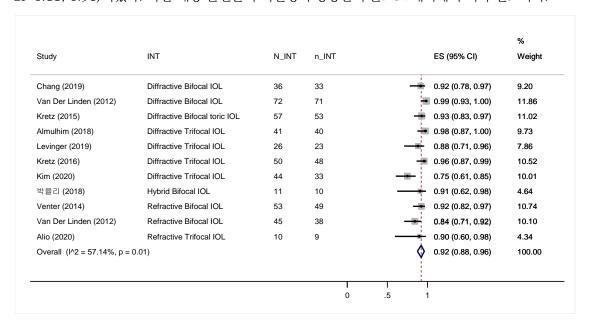
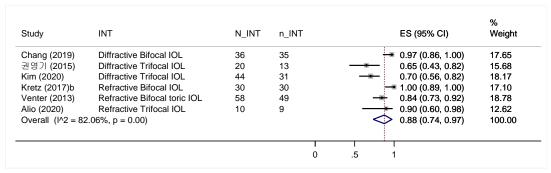



그림 3.43 IOL: 전반적 만족도(단일군 연구)

다초점 인공수정체 시술 후 시력 만족도를 조사한 연구들에서 원거리 시력에 만족한 경우는 88% (95% CI: 0.74, 0.97)이었으며 중간거리 시력 87% (95% CI: 0.82, 0.91), 근거리 시력 90% (95% CI: 0.77, 0.98)수준으로 나타났다. 다만 원거리, 근거리 시력 만족도를 보고한 문헌들내에서 이질성이 높은 수준으로 해석에 주의가 필요하다.

@ 원거리

Study	INT	N_INT	n_INT			ES (95% CI)	% Weight
Chang (2019)	Diffractive Bifocal IOL	36	33		-	0.92 (0.78, 0.97)	16.29
Kim (2020)	Diffractive Trifocal IOL	44	34		-	0.77 (0.63, 0.87)	19.87
권영기 (2015)	Diffractive Trifocal IOL	20	16			0.80 (0.58, 0.92)	9.15
Venter (2014)	Refractive Bifocal IOL	53	46			0.87 (0.75, 0.93)	23.88
Venter (2013)	Refractive Bifocal toric IOL	58	52		-	0.90 (0.79, 0.95)	26.12
Alio (2020)	Refractive Trifocal IOL	10	9			0.90 (0.60, 0.98)	4.69
Overall $(I^2 = 0)$	00%, p = 0.48)				♦	0.87 (0.82, 0.91)	100.00
				1	 	I	
				0	.5	1	

® 중간거리

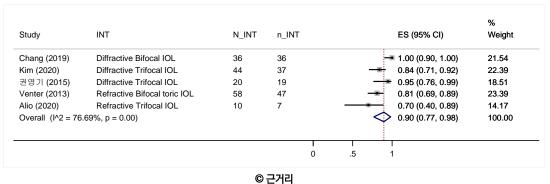


그림 3.44 IOL: 시력만족도(단일군 연구)

단일군 연구에서 동일한 다초점 인공수정체를 다시 선택하겠냐는 문항에 그렇다고 응답한 환자의 비율은 94% (95% CI: 0.88, 0.98) 수준이었으며 본인이 받은 다초점 인공수정체를 가족, 친구 등 타인에게도 추천하겠냐는 문항에 그렇다고 응답한 환자의 비율은 92% (95% CI: 0.83, 0.98)이었다. 다만 동일한 인공수정체 재선택여부, 타인추천의향을 보고한 문헌들내에서 이질성이 높은 수준으로 해석에 주의가 필요하다.

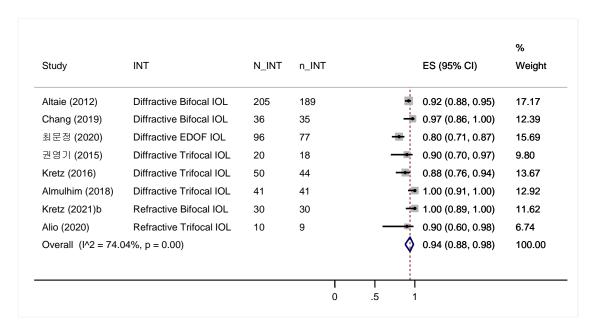


그림 3.45 IOL: 동일한 인공수정체 재선택 의향(단일군 연구)

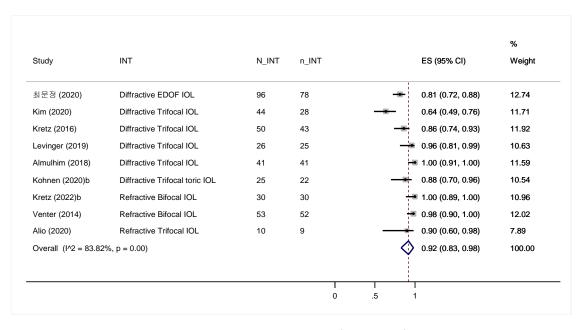


그림 3.46 IOL: 타인 추천 의향(단일군 연구)

2.2.5. 안경독립성

표 3.20 IOL: 안경독립성 요약표

결과지표	합성수	환자수		결과(9	5% CI)		l ²	유의성
RCT								
전반적 안경독립성	2	60	RR	0.59	[0.47,	0.74]	0.0	
시력별 안경독립성								
원거리	2	60	RR	0.93	[0.65,	1.33]	0.0	NS
중간거리	2	60	RR	0.57	[0.44,	0.75]	0.0	
근거리	2	60	RR	0.57	[0.46,	0.72]	0.0	
단일군 연구								
전반적 안경독립성	15	644	Prop.	0.87	[0.82,	0.92]	58.5	NA
시력별 안경독립성								
원거리	8	300	Prop.	0.96	[0.93,	0.98]	1.2	NA
중간거리	10	370	Prop.	0.94	[0.87,	0.98]	73.7	NA
근거리	10	416	Prop.	0.91	[0.82,	0.97]	84.1	NA

2.2.5.1. 비교군 연구

인공수정체 시술 후 안경을 더 이상 사용하지 않아도 되는 지에 대해 보고한 비교군 연구에는 RCT 1편(Monaco, 2017)이었다. Monaco (2017)의 연구에서는 단초점 인공수정체 대비 회절형 삼중초점 인공수정체, 연속초점 인공수정체를 비교하였으며 다초점 인공수정체 시술군에서 시술 후 안경을 더 이상 필요로 하지 않는 환자가 단초점 인공수정체군에 비해 통계적으로 유의하게 더 많았다(RR: 0.59, 95% CI: 0.47, 0.74). 거리기준 시력으로 구분한 경우 중간거리, 근거리 시력에서 다초점 인공수정체군에서 안경을 더 이상 필요하지 않는 환자 비율이 높았지만 원거리에서는 두 군간에 차이가 없었다.

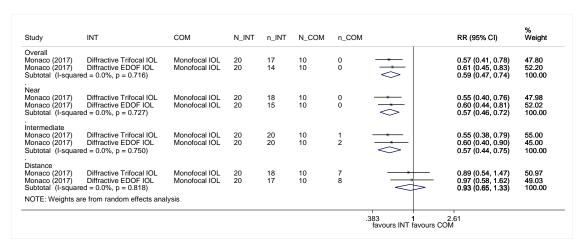


그림 3.47 IOL: 안경독립성(비교군 연구)

2.2.5.2. 단일군 연구

다초점 인공수정체 시술 후 안경착용의 필요성에 대해서 보고한 연구들을 합성한 결과 전체 환자의 87% (95% CI: 0.82, 0.92)가 시술 후 더 이상 안경이 필요하지 않는 것으로 나타났다. 다만 이들 문헌들내에서 이질성이 높은 수준으로 해석에 주의가 필요하다.

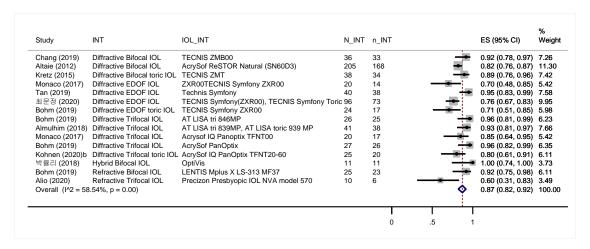
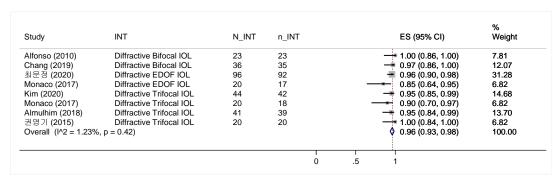
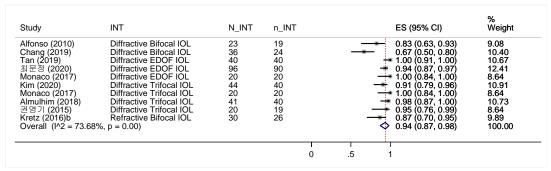
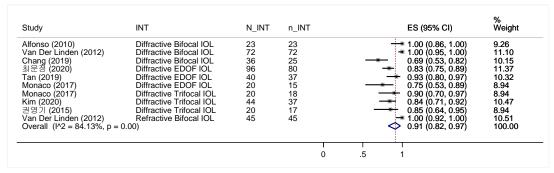




그림 3.48 IOL: 안경독립성(단일군 연구)


원거리, 중간거리, 근거리 시력별로 안경없이 작업이 가능한지에 대해 보고한 연구들을 합성한 결과 원거리 96% (95% CI: 0.93, 0.98), 중간거리 94% (95% CI: 0.87, 0.98), 근거리 91% (95% CI: 0.82, 0.97)로 다초점 인공수정체 시술 후 원거리, 중간거리, 근거리 시력개선으로 더 이상 안경없이 생활이 가능한 환자가 90% 수준을 보였다. 다만 중간거리, 근거리 기준 안경착용 필요성을 보고한 문헌들내에서 이질성이 높은 수준으로 해석에 주의가 필요하다.

@ 원거리

® 중간거리

ⓒ 근거리

그림 3.49 IOL: 안경독립성(단일군 연구)

3. 분석결과: 각막굴절수술

3.1. 안전성

각막굴절수술 관련 안전성을 평가하기 위해 보고된 변수를 시각관련, 수술관련 합병증을 정리하였다. 안전성 관련 보고가 제시된 문헌은 총 11편이었다.

3.1.1. 비교군 연구

3.1.1.1. 시각관련 불편감

비교군 연구에서 각막굴절수술 이후 시각관련 불편감을 보고한 연구는 Soler Tomas (2015) 1편이었으나 해당 문헌에서는 시술간 비교를 목적으로 한 연구로 본 평가의 목적에 맞지 않아 별도로 기술하지 않았다.

■ 원거리교정시력

비교군 연구에서 원거리 교정시력을 보고한 1편(Kohnen, 2020)은 Hybrid micro-Monovision과 micro-Monovision을 비교한 연구로 본 평가의 목적에 맞지 않아 별도로 기술하지 않았다.

3.1.1.2. 수술관련 합병증

비교군 연구에서 각막굴절수술 이후 수술관련 합병증으로 보고한 연구는 Taneri (2019) 1편이었으며 해당 연구에서 Varifocal LASIK과 Monofocal LASIK을 비교한 연구로 두 군 모두에서 수술관련 합병증이 발생하지 않았다고 보고하였다.

표 3.21 각막굴절수술: 수술관련 합병증(비교군 연구)

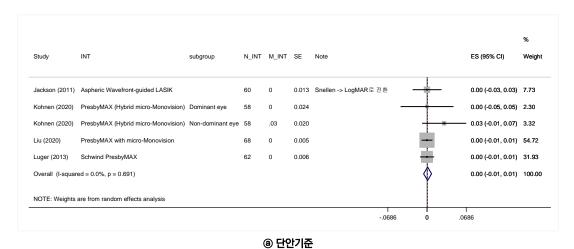
제1저자	중재군	대조군	안전성 보고		
(출판연도)	당세正	네오正	추적관찰	결과	
Taneri (2019)	Varifocal LASIK	Monofocal LASIK	3개월	추적관찰기간 동안 재치료가 필요한 경우는 없었음	

3.1.2. 단일군 연구

3.1.2.1. 시각관련 불편감

각막굴절수술에 대한 단일군 연구 중 시각관련 불편감을 보고한 연구는 3편이었다. Schlote (2017)의 연구에서는 80%의 환자에서 눈부심(Glare)을, 55%에서 달무리(Halo)가 있는 것으로 보고되었다. 하지만 이 경우 불편함의 강도가 2점 이하(5점 Worst) 수준으로 그 정도가 심각하지는 않았다. 이는 Zhang (2016)의 연구에서 중증 눈부심(Glare) 혹은 복시(Double vision) 문제가 발생하지 않은 결과와 유사한 것으로 해석된다.

표 3.22 각막굴절수술: 시력관련 불편감(단일군 연구)


제1저자	スカリフ		안전성 보고
(출판연도)	중재군	추적관찰	결과
Schlote (2017) ¹⁾	SUPRACOR	12개월	· Glare: 16명(80%)에서 보고, 부작용 강도: 1.95±1.4 · Halo: 11명(55%)에서 보고, 부작용 강도: 1.3±1.6 · Double vision: 5명(25%)에서 보고, 부작용 강도: 0.35±0.75 · Fluctuations in vision: 25명(75%)에서 보고, 부작용 강도: 1.5±1.2 · Headaches: 3명(15%)에서 보고, 부작용 강도: 0.4±1.2 · Reduced Distance vision: 14명(70%)에서 보고, 부작용 강도: 1.8±1.7
Zhang (2016)	Aspheric Micro-monovisi on LASIK (Laser Blended Vision)	3개월	· Severe glare 혹은 double vision 문제를 호소하는 환자는 없었음
Ryan (2013)	SUPRACOR	6개월	· 4명(17%)에서 빛에 대한 민감함을 보고함

¹⁾ 척도: 0점= no side effect, 1-5점(5점 very strong)

■ 원거리 교정시력

각막굴절수술에 대한 단일군 연구에서 원거리 교정시력을 보고한 연구들을 합성한 결과 원거리 교정시력은 단안기준 0.00 LogMAR (95% CI: -0.01, 0.01), 양안기준 -0.05 LogMAR (95% CI: -0.06, -0.04)로 시술 후 교정시력 관련 안전성에는 문제가 없는 것으로 확인되었다.

INT N_INT M_INT SE ES (95% CI) Study Weight Kohnen (2020) PresbyMAX 0.018 -0.06 (-0.10, -0.02) Liu (2020) PresbyMAX with micro-Monovision 34 -.05 0.009 -0.05 (-0.07, -0.03) 36.01 SUPRACOR 0.021 Ryan (2013) 23 -.01 -0.01 (-0.05, 0.03) 8.48 Schwind PresbyMAX 0.007 -0.05 (-0.06, -0.04) Overall (I-squared = 22.6%, p = 0.275) -0.05 (-0.06, -0.04) 100.00 NOTE: Weights are from random effects analysis -.096 .096

® 양안기준

그림 3.50 각막굴절수술: 교정시력(단일군, 원거리)

3.1.2.2. 수술관련 합병증

단일군 연구 중 각막굴절수술 관련 합병증을 보고한 9편의 연구 중 합병증이 발생하지 않았다고 보고한 연구는 2편이었다. 가장 많이 보고된 합병증은 안구건조증(3편), 잔여굴절이상으로 인한 재치료(3편) 등이었다. 안구건조증 발생빈도는 13-88%의 수준이었고 Cosar (2014)의 연구에서 중증도별로 구분하여 대부분의 안구건조증이 경증인 것으로 보고하였다. 3편에서 보고된 잔여굴절이상으로 인한 재치료 비율은 8-23.2%로 보고되었다.

표 3.23 각막굴절수술: 수술관련 합병증(단일군 연구)

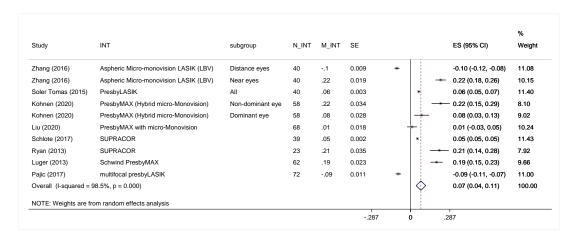
제1저자	ᄌᅚᆈᄀ		안전성 보고
(출판연도)	중재군	추적관찰	결과
Schlote (2017)	SUPRACOR	12개월	· Artificial tears every day: 17명(85%)에서 보고 · Artificial tears more than before treatment: 12명(60%)에서 보고
Xu (2020)	LaserACE	12개월	· 수술 후 안압에는 큰 변화가 없었음 · 수술 중, 후 1안에서 결막하 출혈(subconjunctival hemorrhage)이 발생한 것 이외 명확한 합병증은 없었음
Liu (2020)	PresbyMAX with micro-Monovision	12개월	수술 중 합병증은 발생하지 않음
Romero (2019)	Presbyopia correction using micro–Monovision and aspheric aberration patterns	NA	· 4명(8%)에서 잔존 원시에 대한 재치료를 시행함 · 수술 중 합병증은 없었음 · Corneal flap의 위치변경이 필요한 경우는 없었음 · 수술 후 diffuse lamellar keratitis, bacterial keratitis, haze 발생은 없었음 · 2명(4%)에서 안구건조증이 발생함
Pajic (2017)	multifocal presbyLASIK	6개월	연구기간 동안 부작용 혹은 합병증은 발생하지 않았음
Wang Yin (2016)	central presbyopic LASIK with Custom Q algorithm	12개월	16명(23.2%)에서 1년 이내 굴절 재치료가 필요했음. 2명(2.9%) 환자는 양안 모두에서 재치료가 필요했음
Zhang (2016)	Aspheric Micro-monovision LASIK (Laser Blended Vision)	3개월	수술 후 1주일 째 1안에서 diffuse lamellar keratitis가 발생하였으며 치료로 회복됨
Cosar (2014)	SUPRACOR	6개월	· 5안(4.1%)에서 Peripheral, mild diffuse lamellar keratitis가 발생함 · 8안(6.5%)에서 경증 안구건조증, 1안(0.8%)에서 중등도 안구건조증이 발생함
Ryan (2013)	SUPRACOR	6개월	· 수술 중 합병증은 발생하지 않음 · 3개월 기준 5명(22%), 6개월 기준 3명(13%)에서 안구건조증 보고됨 · 6개월 이내 재치료를 받은 환자는 없었음. 6개월 이후 5명(22%)애서 UDVA 강화를 위해 우세안 재치료를 받음. 이 중 1명은 또한 비우세안의 재치료를 받음

3.2. 효과성

표 3.24 각막굴절수술: 나안시력 요약표

거기기기				단인	기준						양안	기준		
결과지표	합성수	안구수		결과(9	5% CI)	l ²	유의성	합성수	안구수		결과(9!	5% CI)	l ²	유의성
단일군연구														•
원거리														
LogMAR	10	500	Mean	0.07	[0.04, 0.11]	98.5	NA	15	408	Mean	0.01	[-0.04, 0.06]	98.9	NA
20/20 or better	4	219	Prop.	0.43	[0.00, 1.00]	99.0	NA	9	289	Prop.	0.67	[0.54, 1.00]	95.0	NA
20/32 or better	2	80	Prop.	0.79	[0.38, 1.00]	96.0	NA	3	138	Prop.	1.00	[0.98, 1.00]	4.0	NA
20/40 or better	4	152	Prop.	0.99	[0.96, 1.00]	45.0	NA	10	249	Prop.	1.00	[0.98, 1.00]	0.0	NA
중간거리														
LogMAR	3	130	Mean	-0.03	[-0.08, 0.02]	80.9	NA	3	163	Mean	-0.05	[-0.14, 0.03]	97.3	NA
20/20 or better				Not av	/ailable			2	105	Prop.	0.97	[0.89, 1.00]	68.0	NA
20/32 or better				Not av	/ailable			1	69	Prop.	1.00	[0.95, 1.00]	_	NA
20/40 or better	2	72	Prop.	1.00	[0.97, 1.00]	0.0	NA	1	69	Prop.	1.00	[0.98, 1.00]	_	NA
근거리														
LogMAR	11	574	Mean	0.14	[0.10, 0.18]	99.0	NA	10	336	Mean	0.12	[0.07, 0.16]	97.2	NA
20/20 or better	3	195	Prop.	0.60	[0.00, 1.00]	91.0	NA	1	36	Prop.	0.78	[0.64, 0.91]	_	NA
20/32 or better				Not av	/ailable						Not av	ailable		
20/40 or better	2 72 Prop. 0.96 [0.91, 1.00] 7.0 NA					NA				Not av	ailable			
J1 or better	4	126	Prop.	0.44	[0.00, 1.00]	78.0	NA	5	159	Prop.	0.24	[0.00, 0.43]	91.0	NA
J2 or better	2	80	Prop.	0.76	[0.41, 1.10]	94.0	NA	5	159	Prop.	0.88	[0.79, 1.00]	76.0	NA
J4 or better	2	80	Prop.	0.85	[0.58, 1.00]	92.0	NA	5	159	Prop.	1.00	[0.98, 1.00]	0.0	NA

3.2.1. 나안시력


3.2.1.1. 비교군 연구

비교군 연구에서 나안시력을 보고한 연구들은 각막굴절수술법간의 비교를 시행한 경우로 본 평가의 목적에 맞지 않아 별도로 기술하지 않았다(Khalifa, 2011; Kohnen, 2020; Oh, 2013; Soler Tomas, 2015).

3.2.1.2. 단일군 연구

■ 원거리 나안시력

각막굴절수술 이후 원거리 나안시력을 보고한 연구들에서의 결과는 아래 그림과 같다. 수술 후 단안기준을 측정된 원거리 나안시력은 0.07 LogMAR (95% CI: 0.04, 0.11)이었으며 양안기준에서는 0.01 LogMAR (95% CI: -0.04, 0.06)으로 시술 후 임상적으로 우수한 시력을 달성하였다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 매우 높은 수준으로 결과 해석시 주의가 필요하다.

@ 단안기준 N_INT M_INT SE Weight ES (95% CI) Study subgroup Zhang (2016) Aspheric Micro-monovision LASIK (LBV) -0.11 (-0.12, -0.10) 7.46 Oh (2013) Aspheric corneal ablation with the CST 12 0.115 Sneller -> LogMAR로 전환 0.00 (-0.23, 0.23) 3.06 LaserACE Xu (2020) -.14 -0.14 (-0.19, -0.09) 7.02 0.05 (-0.00, 0.10) 6.97 Kohnen (2020) PresbyMAX 58 .05 0.026 Uthoff (2012) PresbyMAX myopic 10 .09 0.025 0.09 (0.04, 0.14) 7.01 -0.04 (-0.08, 0.00) hyperopi Uthoff (2012) PresbyMAX emmetropic 10 .03 0.035 0.03 (-0.04, 0.10) 6.62 Liu (2020) Schlote (2017) PresbyMAX with micro-Mono SUPRACOR 0.031 0.00 (-0.06, 0.06) 재시술 의향 YES 15 0.003 Decimal->LogMAR로 전환 0.10 (0.09, 0.11) Schlote (2017) SUPRACOR 재시술 의향 No .04 .07 0.009 Decimal->LogMAR로 전환 0.04 (0.02, 0.06) 7.43 Ryan (2013) 7.14 Luger (2013) Schwind PresbyMAX 31 .07 0.022 0.07 (0.03, 0.11) Wang Yin (2016) central presbyopic LASIK with Custom Q algorithm
Oh (2013) conventional presbyopic excimer laser (NCST) NCST - na 0.006 -0.04 (-0.05 -0.03) 7.47 0.00 (-0.18, 0.18) 3.97 0.090 Snellen -> LogMAR로 전환 Paiic (2017) multifocal presbyLASIK 0.008 0.00 (-0.02, 0.02) Overall (I-squared = 98.9%, p = 0.000) 0.01 (-0.04, 0.06) NOTE: Weights are from random effects analysis

® 양안기준

그림 3.51 각막굴절수술: 나안시력(단일군, 원거리)

전체 분석결과 나타난 문헌 간 이질성의 요인을 탐색하기 위하여 각막굴절수술 시행국가에 따라 하위군 분석을 시행하였으나 문헌 간 이질성을 설명하는 요인을 확인할 수 없었다.

표 3.25 각막굴절수술: 나안시력(단일군, 원거리) 하위군 분석

	분류	문헌수	ES	95%	95% CI			
단안기준								
	유럽	6	0.087	0.000	0.173	97.9		
국가	아시아	3	0.043	-0.143	0.229	99.1		
	기타	1	0.190	0.145	0.235	-		
양안기준								
	유럽	9	0.031	-0.009	0.071	97.7		
국가	아시아	5	-0.077	-0.133	-0.020	75.3		
	기타	1	0.007	0.028	0.112	_		

각막굴절수술 이후 원거리 나안시력을 스넬렌 시력척도로 보고한 연구들에서의 결과는 아래와 같다. 수술 후 단안기준을 측정된 나안시력이 20/20 or better을 달성한 경우는 43% (95% CI: 0.00, 1.00)이었으며 양안기준에서는 67% (95% CI: 0.54, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 매우 심각한 수준으로 결과 해석시 주의가 필요하다.

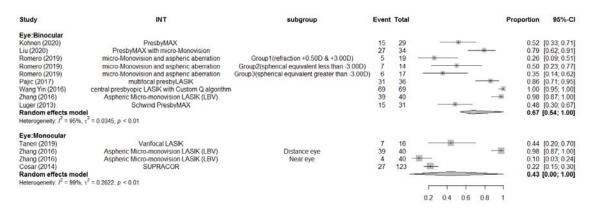


그림 3.52 각막굴절수술: 나안시력(단일군, 원거리, 20/20 or better)

각막굴절수술 후 단안기준을 측정된 시력이 20/25 or better을 달성한 경우는 60% (95% CI: 0.00, 1.00)이었으며 양안기준에서는 85% (95% CI: 0.78, 1.00)이었다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 연구들 간의 이질성이 매우 높은 수준으로 결과 해석시 이에 대한 주의가 필요해 보인다.

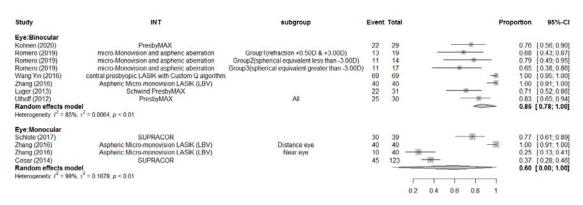


그림 3.53 각막굴절수술: 나안시력(단일군, 원거리, 20/25 or better)

각막굴절수술 후 20/30 or better을 달성여부를 단안기준에서 보고한 연구는 RCT 1편(Khalifa, 2011)이었으며 해당 연구에서 환자 100% 모두 해당 시력수준을 달성하였다. 양안기준에서는 99% (95% CI: 0.94, 1.00)환자가 해당 시력을 달성하였다.

그림 3.54 각막굴절수술: 나안시력(단일군, 원거리, 20/30 or better)

수술 후 단안기준을 측정된 원거리 시력이 20/32 or better을 달성여부를 보고한 1편(Zhang, 2016)의 연구에서는 79% (95% CI: 0.38, 1.00)이었다. 양안기준 원거리 시력을 보고한 연구들에서는 100% (95% CI: 0.98, 1.00) 환자가 20/32 or better의 시력을 보인 것으로 나타났다.

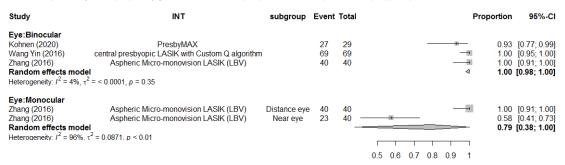


그림 3.55 각막굴절수술: 나안시력(단일군, 원거리, 20/32 or better)

각막굴절수술 후 원거리 시력이 20/40 or better을 달성여부를 보고한 연구들을 합성한 결과 단안 99% (95% CI: 0.96, 1.00), 양안기준 100% (95% CI: 0.98, 1.00)가 해당 시력이상을 달성한 것으로 나타났다.

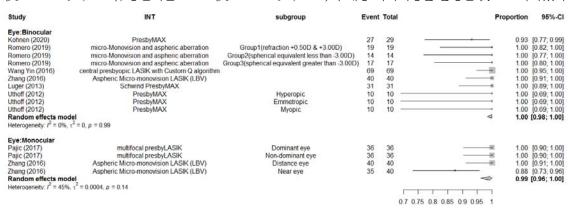


그림 3.56 각막굴절수술: 나안시력(단일군, 원거리, 20/40 or better)

■ 중간거리 나안시력

각막굴절수술 이후 중간거리 나안시력은 단안기준 -0.03 LogMAR (95% CI: -0.08, 0.02)이었으며 양안기준에서는 -0.05 LogMAR (95% CI: -0.14, 0.03)으로 수술 후 임상적으로 우수한 시력수준을 달성하였다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 이질성이 매우 높은 수준으로 결과 해석시주의가 필요하다.

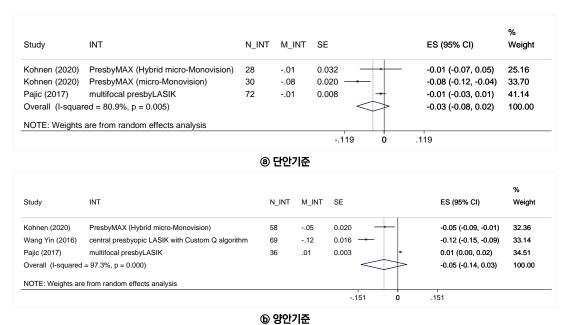


그림 3.57 각막굴절수술: 나안시력(단일군, 중간거리)

각막굴절수술 이후 중간거리 나안시력 20/20 or better을 보고한 연구 2편을 합성한 결과에서 양안기준 해당시력 이상을 보인 환자는 97% (95% CI: 0.89, 1.00)이었다. 단안기준 결과를 보고한 연구는 없었다.

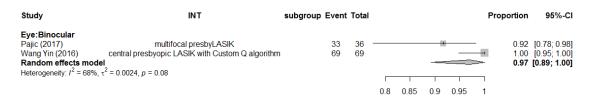


그림 3.58 각막굴절수술: 나안시력(단일군, 중간거리, 20/20 or better)

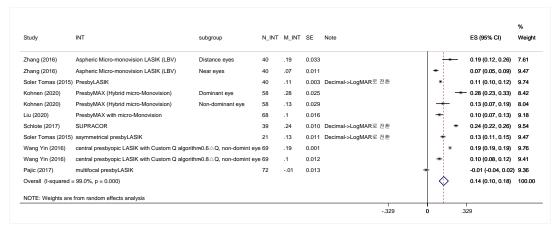
각막굴절수술 이후 중간거리 나안시력 20/25 or better를 보고한 1편(Wang Yin, 2016)의 연구에서 양안기준 100% (95% CI: 0.94, 1.00)환자 모두가 해당 시력을 이었다. 단안기준 결과를 보고한 연구는 없었다.

그림 3.59 각막굴절수술: 나안시력(단일군, 중간거리, 20/25 or better)

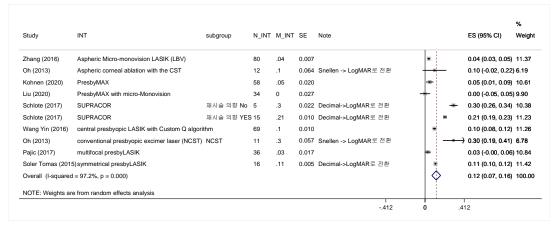
각막굴절수술 이후 중간거리 나안시력 20/30 or better를 보고한 연구는 없었다.

20/32 or better를 보고한 1편(Wang Yin, 2016)의 연구에서 양안기준 100% (95% CI: 0.94, 1.00)환자 모두가 해당 시력을 이었다. 단안기준 결과를 보고한 연구는 없었다.

그림 3.60 각막굴절수술: 나안시력(단일군, 중간거리, 20/32 or better)


각막굴절수술 이후 중간거리 나안시력 20/40 or better를 보고한 연구에서 단안, 양안 모두 100% 환자가 해당 시력 이상의 시력수준에 달성하였다.

Study	INT	subgroup	Event	Total	Proportion 95%-C	CI
Eye:Monocular Pajic (2017) Pajic (2017) Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	multifocal presbyLASIK multifocal presbyLASIK $0, \rho = 1.00$	Dominant eye Non-dominant eye	36 36	36 36	1.00 [0.90; 1.00 [0.90; 1.00 [0.97; 1.00 [1 <u>j</u>
Eye:Binocular Wang Yin (2016) Random effects model Heterogeneity: not applicabl	central presbyopic LASIK with Custom Q algorithm		69	69	1.00 [0.95; 1 1.00 [0.98; 1 0.92 0.94 0.96 0.98 1	


그림 3.61 각막굴절수술: 나안시력(단일군, 중간거리, 20/40 or better)

■ 근거리 나안시력

각막굴절수술 이후 근거리 나안시력은 단안기준 0.14 LogMAR (95% CI: 0.10, 0.18)이었으며 양안기준에서는 0.12 LogMAR (95% CI: 0.07, 0.16)으로 시술 후 임상적으로 우수한 시력을 달성하였다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 이질성이 매우 높은 수준으로 결과 해석시 이에 대한 주의가 필요해 보인다.

@ 단안기준

® 양안기준

그림 3.62 각막굴절수술: 나안시력(단일군, 근거리)

전체 분석결과 나타난 문헌 간 이질성의 요인을 탐색하기 위하여 각막굴절수술 시행국가에 따라 하위군 분석을 시행하였으나 문헌 간 이질성을 설명하는 요인을 확인할 수 없었다.

표 3.26 각막굴절수술: 나안시력(단일군, 근거리) 하위군 분석

	분류	문헌수	ES	95%	6 CI	l ² (%)
단안기준						
771	유럽	8	0.145	0.101	0.189	99.2
五八	아시아	3	0.111	0.060	0.161	84.2
양안기준						
ユュ	유럽	6	0.132	0.078	0.187	97.4
- 1/1	아시아	4	0.093	0.009	0.178	87.3

각막굴절수술 이후 근거리 나안시력을 스넬렌 시력척도로 보고한 연구들에서의 결과는 아래와 같다. 수술 후 단안기준을 측정된 시력이 '20/20 or better'을 달성한 경우는 60% (95% CI: 0.00, 1.00)이었으며 양안기준의 시력을 보고한 1편의 연구(Pajic, 2017)에서는 78%로 보고하였다. 해당 단안기준 양적합성 결과에서 I^2 가 90% 수준으로 이질성이 심각한 수준으로 결과 해석시 이에 대한 주의가 필요해 보인다.

그림 3.63 각막굴절수술: 나안시력(단일군, 근거리, 20/20 or better)

각막굴절수술 후 단안기준 '20/25 or better' 시력을 보고한 연구 1편(Cosar, 2014)에서는 89%로 보고하였다.

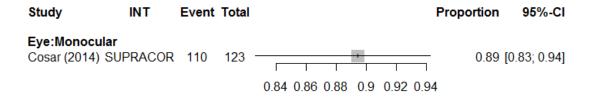


그림 3.64 각막굴절수술: 나안시력(단일군, 근거리, 20/25 or better)

각막굴절수술 후 '20/30 or better', '20/32 or better' 기준으로 보고한 연구는 없었다.

단안기준을 측정된 시력이 '20/40 or better'을 보고한 1편(Pajic, 2017)의 연구에서는 96%가 해당 시력을 달성한 것으로 보고하였다.

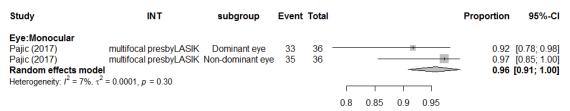


그림 3.65 각막굴절수술: 나안시력(단일군, 근거리, 20/40 or better)

근거리 나안시력을 Jaeger 척도로 보고한 연구들에서의 결과는 아래와 같다.

'J1 or better'을 달성한 환자는 단안기준 24% (95% CI: 0.00, 0.43), 양안기준 44% (95% CI: 0.27, 0.61) 수준이었다. 단안기준 J2 or better을 달성한 환자는 1편(Zhang, 2016)에서 보고하였으며 76%이었으며, 양안기준 88% (95% CI: 0.79, 1.00) 수준이었다. 'J4 or better'에서도 단안기준으로 보고한 연구는 1편(Zhang, 2016)이었으며 해당 연구에서는 85%가 해당 시력을 달성한 것으로 보고하였다. 양안기준에서는 100% (95% CI: 0.98, 1.00) 모든 환자에서 해당 시력을 달성한 것으로 나타났다. Jaeger 척도에서도 문헌 간 이질성이 상당히 높은 수준으로 결과해석에 주의가 필요하다.

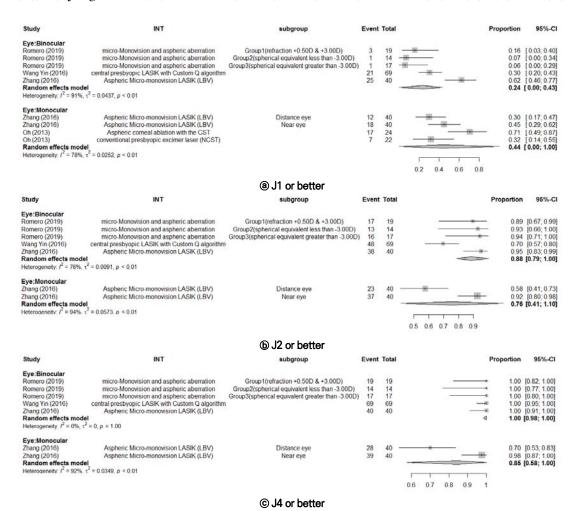


그림 3.66 각막굴절수술: 나안시력(단일군, 근거리, Jaeger)

3.2.2. 교정시력

표 3.27 각막굴절수술: 교정시력 요약표

			단안기준					
결과지표	합성수	안구수			5% CI)		l ²	유의성
단일군연구								•
중간거리								
LogMAR				Not ava	ailable			
근거리								
LogMAR	3	184	Mean	0.19	[0.05,	0.32]	97.5	NA
≥20/20	1	123	Prop.	0.95	[0.90,	0.98]	-	NA
≥20/25	1	123	Prop.	1.00	[0.97,	1.00]	_	NA
J1 or better				Not ava	ailable			
			양안기준	•				
결과지표	합성수	안구수		결과(9	5% CI)		l ²	유의성
단일군연구								
중간거리								
LogMAR	1	4	Mean	0.13	[0.01,	0.25]	_	NA
근거리								
LogMAR	4	126	Mean	0.17	[-0.01,	0.34]	98.1	NA
≥20/20				Not ava	ailable			
≥20/25				Not ava	ailable			
J1 or better	3	50	Prop.	1.00	[0.96,	1.00]	0	NA

3.2.2.1. 비교군 연구

비교군 연구에서 교정시력을 보고한 연구들은 각막굴절수술법간의 비교를 시행한 경우로 본 평가의 목적에 맞지 않아 별도로 기술하지 않았다(Khalifa, 2011; Kohnen, 2020).

3.2.2.2. 단일군 연구

■ 중간거리 교정시력

각막굴절수술 이후 중간거리 교정시력을 보고한 문헌 1편(Xu, 2020)에서는 양안기준 0.13 LogMAR으로보고하였다. Xu (2020)은 노안 피험자를 대상으로 LaserACE 시술 후 1년 동안의 원거리가 교정된 중간거리 시력을 양안기준으로 보고하였다. 수술 전 $0.33\pm0.12 \text{ LogMAR}$ 에서 6개월 후 $0.12\pm0.12 \text{ LogMAR}$ (p<0.05), 12개월 후 $0.13\pm0.12 \text{ LogMAR}$ (p<0.05)로 개선되었음으로 보고하였다. 각막굴절수술 이후 중간거리 교정시력을 스넬렌 시력척도로 보고한 연구는 없었다.

■ 근거리 교정시력

각막굴절수술 이후 근거리 교정시력은 단안기준 0.19 LogMAR (95% CI: 0.05, 0.32)이었으며 양안기준에서는 0.17 LogMAR (95% CI: -0.01, 0.34)으로 시술 후 임상적으로 우수한 시력을 달성하였다. 다만 해당 양적합성 결과에서 I^2 가 90% 수준으로 이질성이 매우 높은 수준으로 결과 해석시 이에 대한

주의가 필요해 보인다.

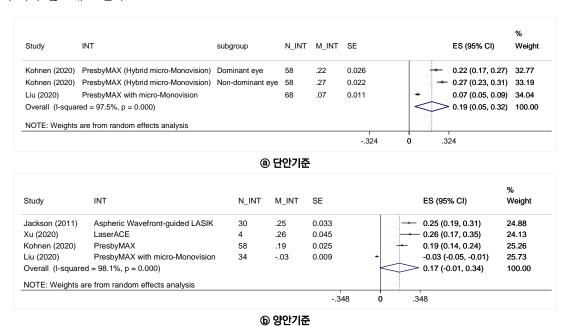


그림 3.67 각막굴절수술: 교정시력(단일군, 근거리)

각막굴절수술 이후 근거리 교정시력을 스넬렌 시력척도로 보고한 연구들에서의 결과는 아래와 같다. 수술후 단안기준을 근거리 교정시력이 '20/20 or better'를 보고한 1편(Cosar, 2014)의 연구에서는 95% 환자가 해당 시력을 달성한 것으로 보고하였다.

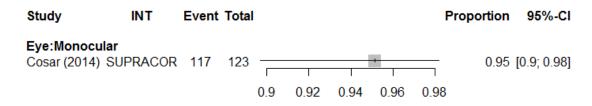


그림 3.68 각막굴절수술: 교정시력(단일군, 근거리, 20/20 or better)

수술 후 단안기준을 근거리 교정시력이 '20/25 or better'를 보고한 1편(Cosar, 2014)의 연구에서는 100% 환자가 해당 시력을 달성한 것으로 보고하였다.

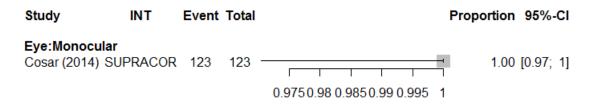


그림 3.69 각막굴절수술: 교정시력(단일군, 근거리, 20/25 or better)

근거리 교정시력을 Jaeger 척도로 보고한 연구는 Romero (2019) 1편이었다. 해당 결과에서는 100% 환자들이 근거리 교정시력 'J1 or better'을 달성하였다고 보고하였다.

그림 3.70 각막굴절수술: 교정시력(단일군, 근거리, J1 or better)

3.2.3. 대비감도

3.2.3.1. 비교군 연구

대비감도에 대해 보고한 비교군 연구는 없었다.

3.2.3.2. 단일군 연구

Schlote (2017)의 연구에서는 측정된 대비감도 1.83±0.18(단안)은 연령별 평균 범위에 포함되는 수준이라고 보고하였다. Zhang (2016)은 주간시(photopic)와 박명시(mesopic) 조건에서 측정된 대비감도가 수술 전후 유의한 차이가 없음을 보고하였다. Uthoff (2012)는 수술 전부터 수술 후 6개월까지 대비감도의 차이가 크지 않았으며 수술환자군 별로도 차이가 크지 않은 것으로 보고하였다. Romero (2019) 연구에서는 구면렌즈대응치(spherical equivalent)가 -3.00D 이하인 Group 2에서 18cpd에서 대비감도가 시술 전 대비 유의하게 증가하였으며 다른 군에서는 변화가 없는 것으로 보고하였다.

표 3.28 각막굴절수술: 시술만족도(단일군 연구)

제1저자 (출판연도)	중재군	결과변수			N	mean±SD	비고
Schlote (2017)	SUPRACOR	CS ¹⁾		12개월	39안	1.83±0.18	
	A 1 :	AULCSF ²⁾ ((Massasia)	시술전	80안	1.38±NA	NA
Zhang	Aspheric Micro-monovision LASIK	AULCSF	(iviesopic)	3개월	80안	1.41±NA	INA
(2016)	(Laser Blended Vision)	ALII C∩⊑ ²⁾ /	(Photonia)	시술전	80안	1.42±NA	NA
	(Laser Bieriaea Vision)	AULSCF ²⁾ (Photopic)		3개월	80안	1.43±NA	INA
		CS(AII)		시술전	20안	1.85±0.16	NA
		CO(AII)		6개월	20안	1.72±0.20	INA
		CS(Hypero	onio)	시술전	20안	1.82±0.16	NA
Uthoff	PresbyMAX	СЗ(Пурего	opic)	6개월	20안	1.69±0.23	INA
$(2012)^{3)}$	FIESDYWAX	CS(Emme	tropio)	시술전	20안	1.86±0.16	NA
		CS(EIIIII)e	tropic)	6개월	20안	1.73±0.16	INA
		CS(Myopic	٠)	시술전	20안	1.86±0.16	NA
		CS(IVIYOPIC	<i>i)</i>	6개월	20안	1.74±0.22	INA
_	Presbyopia correction		3cpd	시술전	38안	1.54±NA	p=0.221
Romero	using micro-Monovision	Group1 ⁴⁾	Sopu	6개월	38안	1.49±NA	μ-υ.ΖΖΙ
(2019)	and aspheric aberration		6cpd	시술전	38안	1.62±NA	p=0.164

				6개월	38안	1.56±NA					
			12and	시술전	38안	1.29±NA	p=0.535				
			12cpd	6개월	38안	1.31±NA	p=0.555				
			10	시술전	38안	0.83±NA	0.267				
			18cpd	6개월	38안	0.84±NA	p=0.367				
			Sand	시술전	28안	1.47±NA	p=0.276				
			3cpd	6개월	28안	1.38±NA	p=0.276				
			Gond	시술전	28안	1.56±NA	n=0.412				
	patterns	Group2 ⁵⁾	6cpd	6개월	28안	1.52±NA	p=0.412				
			12and	시술전	28안	1.34±NA	250				
			12cpd	6개월	28안	1.27±NA	p=0.364				
								10and	시술전	28안	1.05±NA
			18cpd	6개월	28안	0.91±NA	p=0.021				
			Sand	시술전	34안	1.42±NA	p=0.340				
			3cpd	6개월	34안	1.49±NA	p=0.340				
			Canad	시술전	34안	1.60±NA	O 262				
		C 26)	6cpd	6개월	34안	1.51±NA	p=0.262				
		Group3 ⁶⁾	10 1	시술전	34안	1.25±NA	0.100				
			12cpd	6개월	34안	1.18±NA	p=0.420				
			10	시술전	34안	1.10±NA	0.074				
			18cpd	6개월	34안	0.92±NA	p=0.371				
4) =1	. 1										

¹⁾ Photopic logarithmic contrast sensitivity was measured by using the Pelli-Robson contrast sensitivity test; 2) Quantified the amount of contrast sensitivity function (CSF) improvement by computing the change in the area under the log CSF (AULCSF); 3) 해당 표에는 Monocular 결과만 기술; 4) refraction +0.50 D and +3.00D; 5) spherical equivalent less than -3.00D; 6) spherical equivalent greater than -3.01D; cpd: cycles per degree

3.2.4. 시술만족도

표 3.29 각막굴절수술: 만족도 요약표

결과지표	합성수	환자수		결과(9	5% CI)		l ²	유의성
단일군 연구								
전반적 만족도	4	97	Mean	88.7	[83.4,	93.9]	80.3	NA
동일 각막굴절수술 선택의향	4	79	Prop.	0.75	[0.64,	0.84]	0.0	NA

3.2.4.1. 비교군 연구

비교군 연구에서 시술만족도를 보고한 2편의 연구들은 각막굴절수술법간의 비교를 시행한 경우로 본 평가의 목적에 맞지 않아 별도로 기술하지 않았다(Soler Tomas, 2015; Kohnen, 2020).

3.2.4.2. 단일군 연구

각막굴절수술 만족도를 연속형으로 보고한 단일군 연구 3편에서 시술 전후 비교에서 유의한 개선을 보였다.

표 3.30 각막굴절수술: 시술만족도(단일군 연구,	연소형)
# 0.00 112212 M2C1#(C2C C1)	

제1저자 (출판연도)	중재군	결과변수		N	mean±SD	비고	
			시술전	4명	24.50±3.10		
Xu (2020)	LaserACE	Overall (0-3점, 0점 best) ¹⁾	6개월	4명	15.30±3.20	p<0.05	
			12개월	4명	17.20±2.90		
		Overall (0-100점, 100점 Best)	시술전	37명	30.0±11.0	₹0.0}q	
		Overall (0-100점, 100점 Best)	12개월	34명	94.0±6.0	ρ(0.05	
1: (2020)	PresbyMAX with	Distance vision (0-100점,	시술전	37명	37.0±12.0	₹0.0}q	
Liu (2020)	micro-Monovision	100점 Best)	12개월	34명	92.0±7.0	ρ(0.05	
		Near vision (0-100점, 100점	시술전	37명	56.0±14.0	€0.0	
		Best)	12개월	34명	93.0±8.0	ρ(0.05	
		Overall (0-100점, 100점 Best)	시술전	40명	76.0±15.0	₹0.0}q	
	Aspheric	Overall (0-100점, 100점 Best)	3개월	40명	92.0±6.0	ρ(0.05	
Zhang	Micro-monovision	Distance vision (0-100점,	시술전	40명	39.0±17.0	~/0.0E	
(2016)	LASIK (Laser	100점 Best)	3개월	40명	89.0±8.0	p(0.05	
	Blended Vision)	Near vision (0-100점, 100점	시술전	40명	75.0±21.0	~/0.0E	
		Best)	3개월	40명	90.0±6.0	p(0.05	

^{1) 10}개 영역, 30점 만점

각막굴절수술 이후 만족도를 범주형으로 보고한 단일군 연구 2편에서 모두 시술 만족도를 90% 이상의 수준을 보고하였다.

표 3.31 각막굴절수술: 시술만족도(단일군 연구, 범주형)

제1저자 (출판연도)	중재군	결과변수		n/N(%)	비고
Mana Vin	Control are abovenia I ACIV		1개월	63/69 (91.3%)	
Wang Yin (2016)	Central presbyopic LASIK with Custom Q algorithm	Subjective Satisfaction	3개월	66/69 (65.7%)	
(2010)	With Custom Q algorithm	With Custom Q algorithm		69/69 (100%)	
Ryan (2013)	SUPRACOR	Happy they had the procedure	6개월	21/23 (91.3%)	
nyan (2013)	SUPNACUN	Satisfied with their UDVA	6개월	18/23 (78.3%)	

전반적 시술만족도를 보고한 3편의 연구를 합성한 결과 평균 88.6점 (95% CI: 83.4, 93.9)의 만족도를 보이는 것으로 나타났다. 다만 I^2 가 80% 수준으로 연구들 간의 이질성이 높은 수준으로 결과 해석시 주의가 요구된다.

Study	INT	scale	ES (95% CI)	% Weight
Liu (2020)	PresbyMAX with micro-Monovision	0-100점(100점 Best)	• 93.00 (90.31, 95.69)	39.96
Zhang (2016)	Aspheric Micro-monovision LASIK (LBV)	0-100점(100점 Best)	92.00 (90.14, 93.86)	42.30
Soler Tomas (2015)	asymmetrical presbyLASIK	0-100점(100점 Best)	73.00 (52.26, 93.74)	5.54
Soler Tomas (2015)	symmetrical presbyLASIK	0-100점(100점 Best)	70.00 (57.26, 82.74)	12.20
Overall (I-squared =	80.3%, p = 0.002)		88.66 (83.44, 93.88)	100.00
NOTE: Weights are fr	om random effects analysis			

그림 3.71 각막굴절수술: 전반적 만족도

각막굴절수술에 대한 시술만족도를 범주형을 보고한 연구들의 주요결과는 아래 표와 같다.

π 2 22	ᄁᄓᅜᅺᅯᄉᄾ	니스마조ㄷ	/버ㅈ워	ᆸᄉ
並 ひ.3/	각막굴절수술:	시풀번쪽도	(범수영	연구)

	1저자(연도)	개별연구결과
전반적인	만족도	
1268	Ryan (2013)	23명 중 21명에서 '만족함'으로 보고
시력관련	만족도	
958	Wang Yin (2016)	69명 중 69명 모두 일상활동(Everyday activities)에 만족함(9개월)
1268	Ryan (2013)	23명 중 18명이 UDVA에 만족함
재시술의	향	
430	Kohnen (2020)	29명 중 24명에서 동일한 시술에 대한 재시술 의향있음
929	Schlote (2017)	20명 중 15명에서 동일한 시술에 대한 재시술 의향있음
1123	Soler Tomas (2015)	14명 중 10명에서 동일한 시술에 대한 재시술 의향있음
타인추천		
958	Wang Yin (2016)	69명 중 69명 모두 타인에 동일한 시술 추천의향있음으로 응답함

단일군 연구에서 동일한 각막굴절수술을 다시 시술받을 의향에 대한 문항에 그렇다고 응답한 환자의 비율은 75% (95% CI: 0.64, 0.84)로 수준이었으며 본인이 받은 각막굴절수술을 가족, 친구 등 타인에게도 추천하겠냐는 문항을 조사한 1편(Wang Yin, 2016)에서 100%를 보고하였다.

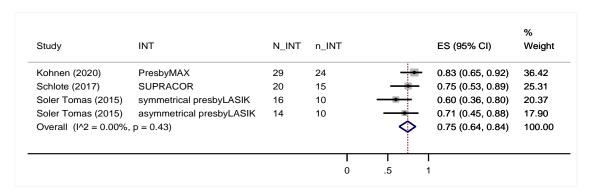


그림 3.72 각막굴절수술: 재시술 의향(단일군 연구)

3.2.5. 안경독립성

표 3.33 각막굴절수술: 안경독립성 요약표

결과지표	합성수	환자수	결과(95% CI)			l ²	유의성
단일군 연구							
시력별 안경독립성							
원거리	4	114	Prop.	0.95	[0.82, 1.00]	77.8	NA
중간거리	2	48	Prop.	0.76	[0.63, 0.88]	0.0	NA
근거리	8	161	Prop.	0.81	[0.66, 0.93]	71.4	NA

3.2.5.1. 비교군 연구

비교군 연구에서 각막굴절수술 후 안경독립성에 대해 보고한 연구는 없었다.

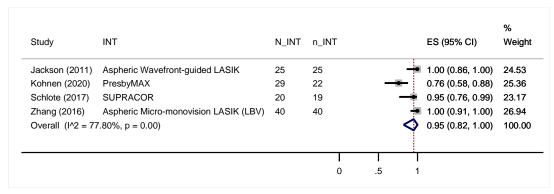
3.2.5.2. 단일군 연구

단일군 연구에서 각막굴절수술 후 안경을 더 이상 사용하지 않아도 되는지에 대해 범주형으로 보고한 연구는 7편으로 각 연구에서의 주요결과는 아래 〈표 3.32〉와 같다

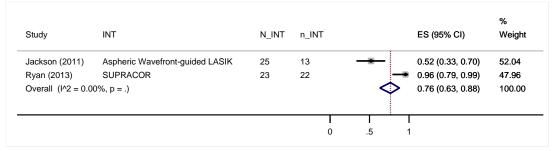
표 3.34 각막굴절수술: 안경독립성(범주형 변수)

	1저자(연도)	개별연구결과
근거리		
225	Jackson (2011)	 독서: 수술 전 66안 중 66안 안경착용 → 12개월 기준 50안 중 34안 안경착용 수표이서(Writing checks): 수술 전 66안 중 66안 안경착용 → 12개월 기준 50안 중 14안 안경착용
457	Xu (2020)	12개월 기준 4명 중 1명 안경착용 6개월 기준 4명 중 근거리, 중간거리 시력교정을 위해 0명 안경착용
929	Schlote (2017)	12개월 기준 20명 중 8명 안경착용
963	Zhang (2016)	3개월 기준 40명 중 1명 안경착용
1268	Ryan (2013)	 독서: 6개월 기준 23명 중 2명 안경착용 신문: 6개월 기준 23명 중 1명 안경착용 휴대전화: 6개월 기준 23명 중 1명 안경착용 메뉴판: 6개월 기준 23명 중 2명 안경착용 작은 라벨: 6개월 기준 23명 중 1명 안경착용 읽는 시간 지연: 6개월 기준 23명 중 1명 안경착용
중간거리		
225	Jackson (2011)	 컴퓨터: 수술 전 66안 중 66안 안경착용 → 12개월 기준 50안 중 24안 안경착용 가사활동: 수술 전 66안 중 46안 안경착용 → 12개월 기준 50안 중 0안 안경착용 여가활동: 수술 전 66안 중 50안 안경착용 → 12개월 기준 50안 중 0안 안경착용
1268	Ryan (2013)	6개월 기준 컴퓨터 사용시 23명 중 1명 안경착용
원거리		
225	Jackson (2011)	 낮 운전: 수술전 66명 중 50안 안경착용 → 12개월 기준 50안 중 0안 안경착용 밤 운전: 수술전 66명 중 54안 안경착용 → 12개월 기준 50안 중 0안 안경착용
430	Kohnen (2020)	12개월 기준 29명 중 7명 안경착용
929	Schlote (2017)	12개월 기준 20명 중 1명 안경착용
963	Zhang (2016)	3개월 기준 40명 중 0명 안경착용

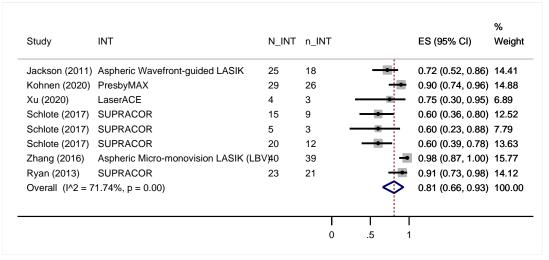
각막굴절수술 후 안경 의존도를 연속형 변수로 측정, 보고한 Schlote (2017)의 연구결과는 아래와 같다.


표 3.35 Schlote (2017) 안경독립성

제1저자	결과변수		중재군			
(출판연도)	결坪한구 	N	mean	SD	비고	
Schlote (2017)	Near vision improved without glasses	20	8.2	1.9		
	Distance vision improved without glasses	20	6.4	3.1		
	SMS reading without glasses	20	7.35	3.4		
	Book reading without glasses	20	7.1	3.5		
	Shopping without glasses	20	7.5	3.0		
	Work at PC screen without glasses	20	7.6	2.95		


0=very poor, 10=very good

원거리, 중간거리, 근거리 시력별로 안경없이 작업이 가능한지에 대해 보고한 연구들을 합성한 결과 원거리


95% (95% CI: 0.82, 1.00), 중간거리 76% (95% CI: 0.63, 0.88), 근거리 81% (95% CI: 0.66, 0.93)으로 나타났다. 각막굴절수술 후 원거리, 중간거리, 근거리 시력개선으로 더 이상 안경없이 생활이 가능한 환자가 80% 이상에 해당하는 우수한 수준의 성과를 보이는 것으로 확인되었다. 다만 원거리, 근거리 기준 안경착용 필요성을 보고한 문헌들내에서 이질성이 높은 수준으로 해석에 주의가 필요하다.

@ 원거리

⑤ 중간거리

ⓒ근거리

그림 3.73 각막굴절수술: 안경독립성(단일군 연구)

1. 평가결과 요약

노인인구는 거의 예외없이 노안을 느끼게 되며 고령화가 진행되면서 꾸준히 노안으로 인해 불편감을 호소하는 인구는 증가하게 된다. 노안을 극복하기 위한 보존적 방법으로 돋보기, 다초점 안경 등이 있으나 최근에는 보존적 방법보다 더 편리한 노안교정술에 대한 국민적 관심이 높다. 비급여 의료기술인 노안교정술에 관한 국민적 관심이 합리적인 의료적 결정으로 이어질 수 있도록 본 평가에서는 체계적 문헌고찰을 통해 노안교정술의 안전성과 효과성에 관한 객관적 정보를 제공하고자 한다.

노안교정술에 대한 임상적 안전성 및 유효성을 평가하기 위한 체계적 문헌고찰에서 다초점 인공수정체 39편, 각막굴절수술 17편 총 56편 문헌을 검토하였다. 각 기술별 안전성 및 유효성의 결과는 다음과 같다.

1.1 안전성

1.1.1. 다초점 인공수정체

체계적 문헌고찰을 수행한 결과, 다초점 인공수정체의 임상적 안전성을 보고한 30편(비교군 연구 9편, 단일군 연구 21편)을 확인할 수 있었다.

다초점 인공수정체 시술 후 환자들에서 주로 보고되는 시각관련 불편감에는 달무리(Halo), 눈부심(Glare)등이 있었다. 비교군 연구 3편에서 해당 시각 관련 불편감의 발생을 보고하였다. 시술 후 다초점 인공수정체와 단초점 인공수정체간에 원거리교정시력은 유의한 차이가 없었다. 비교군 연구 7편 중 6편에서 다초점 인공수정체 수술 관련 합병증 발생하지 않았다고 보고하였다.

단일군 연구 13편에서 달무리(Halo), 눈부심(Glare), 빛뻗침(Starbursts)등과 같은 시각관련 불편감을 보고하고 있으나 연구마다 발생빈도에 매우 큰 차이가 있었다. 단일군 연구에서도 원거리 교정시력이 단안기준 0.01 LogMAR (95% CI: -0.01, 0.02)으로 안전성 측면에 문제가 없었다. 또한 수술관련 합병증을 보고한 20편의 단일군 연구 중 12편에서 수술 관련 합병증은 발생하지 않았다고 보고하였다. 연구들에서 보고된 수술 관련 합병증에는 후낭혼탁, 염증, 안구건조증 등이 있었다. 후낭혼탁 발생을 보고한 연구(3편)에서 발생빈도는 2.2-5.4%이었으며 후낭혼탁 중증도를 보고한 1편(Vounotrypidis, 2017)의 연구에서는 그 증상(0-4점)이 0.23±0.16점으로 경미한 것으로 보고하였다. 시술 후 안구건조증

발생빈도는 8.8-24.4%이었으며 다초점 인공수정체 시술 후에도 남은 잔여 굴절이상 교정을 위해 각막굴절수술을 받은 환자는 4.4-6.9%이었다.

1.1.2. 각막굴절수술

노안교정을 위한 각막굴절수술의 안전성을 보고한 11편(비교군 연구 2편, 단일군 연구 9편)이었다. 단일군 연구(3편)에서 보고된 시각관련 불편감에는 눈부심(Glare), 달무리(Halo)이 많았으나 해당 증상의 불편함의 강도는 낮은 것으로 보고되었다. 원거리 교정시력은 단안기준 0.00 LogMAR (95% CI:-0.01, 0.01)로 안전성 측면에 문제가 없었다. 비교군 연구 1편에서는 각막굴절수술 후 수술관련 합병증이 발생하지 않았다고 보고하였으며, 단일군 연구 9편 중 2편에서 수술관련 합병증이 발생하지 않았다고 보고하였다. 수술관련 합병증을 보고한 경우 안구건조증(4-85%), 잔여굴절이상으로 인한 재치료(8-23.2%) 등이 많이 보고되는 합병증이었으며 발생빈도는 다초점 인공수정체와 같이 연구마다 차이가 컸다.

1.2 유효성

1.2.1. 다초점 인공수정체

RCT 연구에서 다초점 인공수정체 시술군에서의 단안기준 중간거리, 근거리 나안시력이 단초점 인공수정체군에 비해 통계적으로 유의하게 좋았다. Non-RCT 연구에서는 단안기준 근거리 나안시력에서만 다초점 인공수정체와 단초점 인공수정체간의 유의한 차이를 확인할 수 있었다. 단일군 연구에서 다초점 인공수정체 시술 후 단안기준 원거리 나안시력 0.08 LogMAR (95% CI: 0.09, 0.09), 중간거리 나안시력 0.15 LogMAR (95% CI: 0.11, 0.18), 근거리 나안시력 0.15 LogMAR (95% CI: 0.11, 0.19)으로 임상적으로 우수한 시력을 보인 것을 확인할 수 있었다. 다만 해당 양적 합성 결과 연구들 간 이질성이 매우 높아 결과 해석시 특별한 주의가 필요하다.

다초점 인공수정체 시술과 관련하여 전반적 만족도를 보고한 단일군 연구들에서의 시술 만족도는 92% (95% CI: 0.88, 0.96)로 확인되었다. 시력 만족도별로는 원거리 88% (95% CI: 0.74, 0.97), 중간거리 87% (95% CI: 0.82, 0.91), 근거리 90% (95% CI: 0.77, 0.98) 수준으로 나타났다. 또한 RCT 1편에서는 다초점 인공수정체 시술로 더 이상 안경을 사용하지 않아도 되는 환자가 단초점 인공수정체군에 비해 통계적으로 유의하게 더 많았다. 단일군 연구에서는 전체적으로 다초점 인공수정체 시술 환자 중 87% (95% CI: 0.82, 0.92)가 더 이상 안경을 사용할 필요가 없었다. 다초점 인공수정체 시술 후 원거리 작업시 96% (95% CI: 0.93, 0.98), 중간거리 작업시 94% (95% CI: 0.87, 0.98), 근거리 작업시 91% (95% CI: 0.82, 0.97) 환자가 더 이상 안경을 사용할 필요가 없었다. 다만 해당 결과 역시 이질성이 높은 상황으로 결과해석시 특별한 주의가 필요하다.

1.2.2. 각막굴절수술

각막굴절수술에 대한 단일군 연구에서 보고된 단안기준 시술 후 원거리 나안시력은 0.07 LogMAR (95%

CI: 0.04, 0.11), 중간거리 나안시력 -0.03 LogMAR (95% CI: -0.08, 0.02), 근거리 나안시력 0.14 LogMAR (95% CI: 0.10, 0.18)로 수술 후 우수한 시력을 보이는 것을 확인하였다. 다만 해당 결과 역시 이질성이 높아 결과해석시 특별한 주의가 필요하다.

각막굴절수술 만족도를 보고한 3편의 단일군 연구들에서의 만족도는 100점 만점에서 평균 88.6점 (95% CI: 83.4, 93.9)이었으며, 각막굴절수술을 받은 환자 중 75%(95% CI: 0.64, 0.84)가 동일한 각막굴절수술 다시 받을 의향이 있다고 확인되어 각막굴절수술을 이용한 노안교정술 역시 만족도가 좋은 것으로 나타났다. 단일군 연구에서 각막굴절수술 이후 작업시 안경필요성을 보고한 연구들을 합성한 결과 원거리 작업시 95% (95% CI: 0.82, 1.00), 중간거리 작업시 76% (95% CI: 0.63, 0.88), 근거리 작업시 81% (95% CI: 0.66, 0.93)가 더 이상 안경이 필요하지 않은 것으로 확인되었다. 다만 해당 양적합성 결과 이질성이 높은 수준으로 해당 결과해석시 특별한 주의가 필요하다.

2. 결론

노안교정술 소위원회는 노안교정을 위한 다초점 인공수정체와 각막굴절수술의 문헌(56편)을 검토한 결과 각 시술의 안전성과 유효성을 다음과 같이 제언하였다.

다초점 인공수정체와 각막굴절수술을 이용한 노안교정술 이후 달무리, 눈부심과 같은 시각관련 불편감을 호소하는 환자가 있었으며, 이외 수술관련 합병증에는 안구건조증 발생 혹은 노안교정술 이후에도 남은 잔여굴절이상으로 추가 교정술을 받은 경우가 보고되었다. 노안교정술 후 발생할 수 있는 시각관련 불편감과 수술관련 합병증은 시술대상자별 개인차가 커 반드시 노안교정술 전 철저한 안과검사를 통해 개개인별로 발생할 수 있는 시각관련 불편감 및 수술관련 합병증을 최소화할 수 있도록 해야 할 것이다.

노안교정을 위한 다초점 인공수정체, 각막굴절수술을 이용한 노안교정술의 시술 후 나안시력은 임상적으로 우수한 수준이었으며 시술 대상자들에서의 시술만족도, 안경독립성 역시 높았다. 하지만 연구들 간의 이질성이 매우 높은 상태로 해당 결과를 해석 시 특별한 주의가 필요하다.

또한 노안교정술 소위원회에서는 노안교정술이 의학적 필요성이 있는 시술이기보다는 노안으로 인해 평상시 안경이나 콘택트렌즈 등을 사용하는 불편감을 해결하고 싶은 개인들의 선택적 영역으로 판단하였다. 따라서 소위원회는 최근에 국민적 관심이 높은 다초점 인공수정체에 대해 국민들의 이해를 도와 해당 시술이 꼭 필요한 시술인지를 신중하게 생각하여 합리적으로 결정할 수 있도록 아래와 같이 대국민정보를 별도로 제공할 예정이다

1. 다초점 인공수정체를 이용한 노안교정술

1. 다초점 인공수정체를 이용한 노안교정은 누구에게 적용가능한가?

백내장 치료로 인공수정체 삽입술을 받아야 하는 환자 중 노안으로 돋보기를 쓰고 싶지 않은 환자가 기본적으로 대상이 될 수 있다. 다만 여기서 진행된 황반변성, 녹내장, 당뇨망막증과 같은 다른 안과질환을 가진 환자들은 해당시술의 대상이 되지 않는다.

1.1 근시교정술(라식)을 받았는데 다초점 인공수정체 시술을 또 받아도 되는가?

최근에는 다초점 인공수정체의 도수계산방법의 정확도가 개선되어 과거 근시교정술을 받은 환자에서도 다초점 인공수정체를 통한 노안교정이 많이 이루어지고 있다. 다만 이전에 근시교정술을 받고 야간시력 저하, 눈부심, 빛뻗침 등과 같은 증상 혹은 안구건조증이 있는 환자의 경우에는 다초점 인공수정체 삽입 이후 증상 악화를 경험할 수 있어 이에 대한 주의가 요구된다.

2. 다초점 인공수정체를 이용한 노안교정은 안전한가?

다초점 인공수정체는 원래 망막에 여러 개의 초점이 맺혀 달무리나 눈부심 현상이 흔한 부작용으로 알려져 있다. 따라서 야간활동이나 야간운전을 많이 하는 경우 다초점 인공수정체 시술 전에 시각관련 불편감의 발생가능성을 충분히 고려해야 한다. 또한, 다초점 인공수정체에 대한 대다수의 연구에서 수술 관련 합병증이 발생하지 않았다고 보고하였으며 합병증을 보고한 경우에는 후낭혼탁 (2.2-5.4%), 안구건조증 (8.8-24.4%), 잔여굴절이상으로 인한 추가교정시술 (4.4-6.9%) 등이 있었다.

3. 다초점 인공수정체를 이용한 노안교정은 효과적인가?

다초점 인공수정체 시술로 인한 노안개선 효과가 임상적으로 우수하고 환자들의 시술만족도가 높았다. 노안교정술을 고민한다면 시력개선 효과에 개인차가 있을 수 있다는 점과 함께 시력개선이라는 이득과 시술 후 발생할 수 있는 시각 관련 불편감, 수술 관련 합병증을 잘 견주어 합리적인 선택을 할 필요가 있다. 또한, 진행된 황반변성, 녹내장, 당뇨망막증 등 다른 안과질환이 있다면 다초점 인공수정체를 이용한 노안교정술 이후에도 시력이 개선되지 않는 경우가 있을 수 있다는 점도 반드시 기억해야 한다.

3.1 다초점 인공수정체 시술효과는 계속 지속되는가?

황반변성, 녹내장, 당뇨망막증 등과 같은 다른 안과질환의 진행으로 시력저하가 발생하지 않는다면 다초점 인공수정체를 이용한 노안교정술 이후 연령이 증가되더라도 시력교정효과가 유지된다.

※ 자세한 내용은 [별첨] 자료를 참고하기 바란다.

[별첨]

1.1. 다초점 인공수정체를 이용한 노안교정은 누구에게 적용가능한가?

는 속 수정체가 혼탁해져 생기는 백내장 치료로 인공수정체 삽입술을 받아야 하는 환자에서 노안까지함께 개선하고자 하는 환자가 기본적으로 다초점 인공수정체를 이용한 노안교정술의 대상이 될 수있다. 다만, 여기서 진행된 황반변성, 녹내장, 당뇨망막증과 같은 다른 안과질환을 가진 환자들은 해당시술의 대상이 되지 않는다.

과거 백내장 수술에 사용되는 인공수정체는 초점이 하나인 단초점 인공수정체 뿐이었다. 원거리나 근거리 중 한 곳만 초점이 맞춰져 있어 원거리를 잘 보이는 인공수정체를 선택했다면 책, 신문 등 근거리를 볼 때 돋보기를 사용해야 했다. 그러나 최근에는 초점이 여러 개인 다초점 인공수정체로 노안까지 교정이 가능하게 되었다.

백내장 증상이 없을 때 노안교정만을 위해서도 인공수정체 삽입을 받는 환자가 있을 수 있으나 이는 백내장 치료 외에 시력개선을 주된 목적으로 하고 있어 안경, 콘택트렌즈 등을 대체하기 위한 시술에 해당한다. 이 때 다초점 인공수정체 시술이 비교적 안전하다고 하더라도 여전히 시술로 인한 위험부담이 있어 노안교정만을 위해 다초점 인공수정체 시술을 받는 것은 의학적 판단이기보다는 개인적 판단영역이다. 백내장 수술 후 단초점 인공수정체와 다초점 인공수정체를 비교한 de Silva 등(2016)의 체계적 문헌고찰에서도 다초점 인공수정체가 단초점 인공수정체에 비해 근거리 시력개선의 효과는 있지만 달무리, 눈부심과 같은 시각 불편감은 더 많이 발생하였다고 보고하였다. 이를 바탕으로 de Silva 등(2016)은 근거리 시력개선 효과가 시각 불편감을 넘어서는 이득인지는 환자 개개인마다 다를 수 있으며 이 때 돋보기를 쓰지 않으려는 환자의 동기가 다초점 인공수정체를 선택할 때 영향을 미치는 중요한 요인으로 보았다.

1.1.1. 근시교정술(라식)을 받았는데 다초점 인공수정체 시술을 또 받아도 되는가?

다초점 인공수정체 수술은 환자에게 알맞은 도수의 인공수정체를 정확한 위치에 넣는 게 중요하다. 라식 또는 라섹과 같은 각막을 절삭하는 굴절교정수술을 받은 경우 인공수정체 도수를 정확하게 계산하기 어렵고 정확도가 떨어질 수 있다. 인공수정체 도수 계산을 위해 각막굴절교정수술 전 검사자료를 확인하여 이용하는 것이 도움이 될 수 있으나 수술 후 오랜 시간이 흐른 경우 정확도가 떨어질 수 있어 최근에는 정확한 각막굴절력의 평가를 위한 다양한 방법이 고안되어있다(백내장 진단 및 치료지침, 2018). 최근에는 다초점 인공수정체의 도수 계산방법의 정확도가 개선되어 과거 근시교정술을 받은 환자에서도 다초점 인공수정체를 통한 노안교정이 많이 이루어지고 있다. 다만 이전에 근시교정술을 받은 환자 중 야간시력 저하, 눈부심, 빛뻗침, 흐린 시야, 잔상현상, 부정난시 같은 시력이상 혹은 안구건조증이 있는 경우에 다초점 인공수정체 삽입 이후 증상 악화를 경험할 수 있어 이에 대한 주의가 요구된다.

1.2. 다초점 인공수정체를 이용한 노안교정은 안전한가?

노안교정술에 사용되는 인공수정체는 변질이 없으며, 다초점 인공수정체가 사용된 것은 1980년대 중후반부터로 임상에서 오랫동안 사용된 비교적 안전한 기술로 일반 백내장 수술과 기술적 안전성 측면에서는 임상적으로 차이가 없다고 볼 수 있다.

본 평가에서 확인한 노인교정을 위한 다초점 인공수정체 시술 후 발생하는 시각관련 불편감에는 달무리(Halo), 눈부심(Glare), 빛뻗침(Starbursts) 등이 있었으며 이러한 불편감의 발생빈도는 연구마다 그 차이가 컸다. 다초점 인공수정체는 원래 우리의 수정체와는 작용원리가 달라 망막에 여러 개의 초점이 맺혀 본 평가에서 확인되는 달무리나 눈부심 현상은 다초점 인공수정체에서의 흔한 부작용으로 알려져 있다. 따라서 야간활동이나 야간에 운전을 많이 하는 경우에는 다초점 인공수정체의 시술 전에 시각관련 불편감 발생가능성을 충분히 고려해야 한다.

다초점 인공수정체 시술 후 원거리 교정시력이 정상적으로 나오지 않는 경우가 발생할 수 있어 이 역시 다초점 인공수정체 시술 관련 안전성 측면에서 고려된다. 본 체계적 문헌고찰에서 확인한 문헌에서 보고된 원거리 교정시력의 평균은 0.00 LogMAR (Decimal 기준 1.0)수준으로 시력관련 안전성은 우려되지는 않는 상황이었다.

또한 본 평가에서 검토한 다초점 인공수정체에 대한 단일군 연구 20편 중 12편(60%)의 연구에서는 수술 관련 합병증은 발생하지 않았다. 수술 관련 합병증에는 후낭혼탁, 안구건조증, 시술 후 염증, 안압증가, 인공수정체의 이탈 등이 보고되었다. 후낭혼탁을 보고한 연구들(3편)에서의 발생빈도는 2.2-5.4%이었으며 후낭혼탁 중증도를 보고한 1편(Vounotrypidis, 2017)의 연구에서는 그 증상이경미한 것(0.23±0.16점, 4점 매우 심각)으로 보고하였다. 또한 다초점 인공수정체 시술 후에도 남은 잔여 굴절이상의 추가교정을 위해 각막굴절수술을 받은 환자의 비율은 Altaie (2012)의 연구에서 16안(4.4%), Venter (2013)의 연구에서는 4명(6.9%)에서 보고되었다. 시술 후 안구건조증은 흔히 발생하는 수술관련 합병증으로 8.8-24.4%수준으로 다른 증상에 비해 빈도가 높았다. 인공수정체 이탈을 보고한 연구는 1편(Kohnen, 2020)에서 0.7%로 보고되었다. 이 밖에 다초점 인공수정체 시술후 염증(2.2-3.4%) 혹은 안압증가(0.7-6.7%)들도 보고되었으나 모두 간단한 처치 혹은 추가적인 처치없이 회복한 경미한 사례들이었다.

[참고] 시력표기방법

시력 표기하는 방법에는 여러 가지가 있다. 우리나라에서는 흔히 소수(Decimal)표기법으로 사용하고 있다. 스넬렌(Snellen) 시표는 등차급수 배열로 만들어진 시력표로 각 단계 시표 크기의 비가 일정하지 않다는 단점이 있으나 사용하기에 편리하고 시력 1.0 부근에서 시표 크기의 간격이 작아 정상안의 시력변화를 보다 상세하게 알 수 있다는 장점이 있다. 등차급수의 배열에 대수를

씌워 나온 것이 LogMAR(분해능 최소각의 대수)시표이며 이는 수치화하기 쉽고 비교하기가 편해서 안과연구들에서 많이 사용된다.

Decimal	Snellen	LogMAR
1.25	20/16	-0.10
1.00	20/20	0.00
0.80	20/25	0.10
0.67	20/30	0.18
0.63	20/32	0.20
0.50	20/40	0.30

시력검사는 원거리 시력검사와 근거리 시력검사로 나누어지고 이는 또한 나안시력과 교정시력검사로 나눌 수 있다. 이 때 나안시력은 안경이나 콘택트렌즈등을 사용하지 않고 측정한 본인의 원래 시력을 의미하고 시력을 측정하는 거리에 따라 원거리, 중간거리, 근거리로 구분할 수 있다.

1.3. 다초점 인공수정체를 이용한 노안교정은 효과적인가?

다초점 인공수정체를 이용한 노안교정술 이후 시력은 시술의 효과를 확인하는 주요한 기준이 된다. 본 평가에서 검토한 연구들에서 원거리 나안시력 양안기준 0.01 LogMAR (95% CI: -0.01, 0.03), 중간거리 0.12 LogMAR (95% CI: 0.09, 0.15), 근거리 0.14 LogMAR (95% CI: 0.08, 0.20)이었다. 또한 다초점 인공수정체 시술 후 양안기준 나안시력 스넬렌 시표 20/25 (소수시력 0.8) 이상의 시력을 보인 환자는 전체 시술 환자 중 원거리 기준 87%, 중간거리 기준 73%, 근거리 기준 77%에 달하였다. 보통 일상생활에 거의 지장이 없는 수준의 나안시력이 0.8에서 1.2정도 수준인데 앞서 기술한 다초점 인공수정체를 이용한 노안교정술 이후 나안시력은 이 정도 수준에 해당하는 것이다.

다초점 인공수정체를 이용한 노안교정술 이후 해당 시술에 대한 전반적 만족도를 보고한 연구들을 검토한 결과 시술후 만족도는 92% (95% CI: 0.88, 0.96)이었다. 다초점 인공수정체 시술후 시력기준별 만족도는 원거리 시력 만족도 88% (95% CI: 0.74, 0.97), 중간거리 시력 만족도 87% (95% CI: 0.82, 0.91), 근거리 시력 만족도 90% (95% CI: 0.77, 0.98)이었다. 또한 시술후 87% (95% CI: 0.82, 0.92) 환자가 일상생활에서 더 이상 안경을 사용할 필요가 없었으며, 시술 환자의 96% (95% CI: 0.93, 0.98)가 운전과 같은 원거리 작업시 더 이상 안경을 사용할 필요가 없다고 응답하였다. 컴퓨터 업무와 같은 중간거리 작업시 94% (95% CI: 0.87, 0.98), 독서, 휴대전화 사용과 같은 근거리 작업시 91% (95% CI: 0.82, 0.97) 환자가 시술후 더 이상 안경, 콘택트렌즈 등을 사용할 필요가 없었다.

다초점 인공수정체를 이용하여 노안교정을 받은 대상자들에서의 만족도는 높은 수준이었다. 이는 수술 전 시력과 상관없이 근시, 난시, 원시 등의 시력문제와 노안을 다초점 인공수정체를 통해 한 번에 해결할 수 있기 때문일 것이다. 높은 만족도는 '동일한 다초점 인공수정체를 다시 선택할 의향이 있다', '가족 및 친구들에게 본인이 받은 다초점 인공수정체를 추천하겠다.'고 응답한 경우가 전체 시술자 중 90% 이상인 결과에서 재확인할 수 있었다.

다초점 인공수정체 시술로 인한 노안개선효과가 우수하고 시술만족도가 높은 것으로 확인되었다.

그러나 다초점 인공수정체의 효과를 보고한 대부분의 연구가 비교군이 없는 단일군 연구로 근거수준이 높지 않으며 연구들 간의 높은 이질성으로 다초점 인공수정체의 효과를 해석할 때 세심한 주의가 필요한 상황이다. 노안교정을 위해 다초점 인공수정체 시술을 고민할 경우 시력개선 효과에 개인차가 있을 수 있다는 점과 함께 시력개선이라는 이득과 함께 시술 후 나타날 수 있는 시각관련 불편감 혹은 수술관련 합병증을 잘 견주어 합리적인 선택을 할 필요가 있다. 또한 앞서 언급하였듯이 황반변성, 녹내장 등 다른 안과질환이 있다면 다초점 인공수정체를 이용한 노안교정술 이후에도 시력이 개선되지 않는 경우가 있을 수 있다는 점도 꼭 기억해야 한다.

1.3.1. 다초점 인공수정체 시술효과는 계속 지속되는가?

인공수정체의 기능은 변질이 없으므로 다초점 인공수정체를 이용한 노안교정술 이후 연령이 증가되더라도 노안이 더 진행되지 않고 시력교정효과가 유지된다. 다만 황반변성, 녹내장과 같은 다른 안과질환으로 인해 시력저하가 발생하지 않는다는 전제하에 해당 다초점 인공수정체의 노안교정효과는 지속된다고 볼 수 있다.

- 1. 권지원. 노안이란 무엇인가? JKMA 2019;62(12):608-10
- 2. 김수영, 박지은, 서현주, 서혜선, 손희정, 신채민, 등. 체계적 문헌고찰. 한국보건의료연구원. 2011;1-271
- 3. 김수영, 지선미, 이수정, 이윤재, 박지은, 남미희 등. 임상진료지침 개발 매뉴얼. 한국보건의료연구원. 2011;1-114
- 4. 김은철. 노안교정의 수술요법 Ⅱ. JKMA 2019;62(2):623-28
- 5. 대한안과학회, 백내장 진단 및 치료지침. 2017
- 6. 박종훈, 김명준. 노안의 수술적 치료. JKMA 2014;57(6):520-4
- 7. 현주. 노안교정의 수술요법 I. JKMA 2019;62(2):616-22
- 8. de Silva SR, Evans JR, Kirthi V, Ziaei M, Leyland M. Multifocal versus monofocal intraocular lenses a#er cataract extraction. Cochrane Database of Systematic Reviews 2016, Issue 12. Art. No.: CD003169. DOI: 10.1002/14651858.CD003169.pub4.
- 9. Georgios Labiris, Aspa Toli, Aslin Perente, Panagiota Ntonti, Vassilios P. Kozobolis. A systematic review of pseudophakic Monovision for presbyopia correction. Int J Ophthalmol. 2017;10(6): 992-1000
- 10. Kelava L, Barić H, Bušić M, Čima I, Trkulja V. Monovision Versus Multifocality for Presbyopia: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Advances in Therapy. 2017;34(8):1815-39
- 11. Khoshnood B, Mesbah M, Jeanbat V, Lafuma A, Berdeaux G. Transforming scales fo measurement of visual acuity at the group level. Ophthalmic Physiol Opt. 2010;30(6):816-23.
- 12. Zamora-de La Cruz D, Zúñiga-Posselt K, Bartlett J, Gutierrez M, Abariga SA. Trifocal intraocular lenses versus Bifocal intraocular lenses after cataract extraction among participants with presbyopia. Cochrane Database of Systematic Reviews 2020;6:CD012648.
- 13. https://www.nice.org.uk/guidance/ipg455
- 14. https://www.nice.org.uk/guidance/ipg70
- 15. https://emed.mfds.go.kr/#!CECAB01F010
- 16. 국내 의료기기 생산실적 7조원 돌파-인구고령화에 따른 치과용임플란트, 다초점 인공수정체 수요증가. 식품의약품안전처 보도자료. 2020.5.20.
- 17. 건강보험심사평가원 http://www.hira.or.kr/re/diag/hospitalTeme.do?pgmid=HIRAA030009040000
- 18. 병원별 비급여 진료비용 한눈에 비교. 보건복지부, 건강보험심사평가원 보도자료 2019.3.29.
- 19. 건강보험심사평가원 비급여진료비정보(접속일: 2021.2.1.) http://www.hira.or.kr/re/diag/getNewDiagNondeductibleYadmList.do?pgmid=HIRAA0300090 00000

1. 의료기술재평가위원회

의료기술재평가위원회는 총 18명의 위원으로 구성되어 있으며, 노안교정술을 위한 의료기술재평가 위원회는 총 2회 개최되었다.

1.1 2020년 제11차 의료기술재평가위원회

■ 회의일시: 2020년 11월 13일

■ 회의내용: 재평가 프로토콜 및 소위원회 구성 안 심의

1.2 2021년 제8차 의료기술재평가위원회

1.2.1 의료기술재평가위원회분과

■ 회의일시: 2021년 7월 29일~8월 4일

■ 회의내용: 최종심의 사전검토

1.2.2 의료기술재평가위원회

■ 회의일시: 2021년 8월 13일

■ 회의내용: 최종심의

2. 소위원회

노안교정술의 소위원회는 의료기술재평가위원회에서의 논의에 따라 안과전문의 3인, 근거기반의학 2인, 총 5인으로 구성하였으며, 안과전문의는 의료기술재평가자문위원회 pool, 근거기반의학은 신의료기술평가위원회 pool에서 무작위 추출하였다. 소위원회 활동 현황은 다음과 같다.

2.1 제1차 소위원회

■ 회의일시: 2020년 12월 10일

■ 회의내용: 평가계획 및 범위 논의 (시력교정술 중 노안교정술로 범위를 좁혀 평가하기로 함)

2.2 제2차 소위원회

■ 회의일시: 2021년 2월 3일

■ 회의내용: 선택배제기준 및 최종 선택문헌 논의

2.3 제3차 소위원회

■ 회의일시: 2021년 4월 28일

■ 회의내용: 최종 선택문헌의 결과 확인

2.4 제4차 소위원회

■ 회의일시: 2021년 6월 8일

■ 회의내용: 최종결과 확인 및 임상전문가의 의견 추가

2.5 제5차 소위원회

■ 회의일시: 2021년 6월 28일 ~ 7월 5일 서면

■ 회의내용: 최종 평가보고서 검토

3. 문헌검색현황

3.1 국외 데이터베이스

3.1.1 Ovid MEDLINE(R) ALL 1946 to December 09, 2020

(검색일: 2020.12.11)

구분	연번	검색어	검색결과(건)
TUA F TL	1	exp presbyopia/	1,608
네강시	2	Presbyop*.tw.	1,949
대상자 종합	3	1 or 2	2,420
	4	Animals/	6,711,150
동물연구제외	5	Humans/	18,870,707
	6	4 not (4 and 5)	4,728,825
검색종합	7	3 not 6	2,353

3.1,2 Ovid EMBASE 1974 to 2020 December 09

(검색일: 2020.12.11)

구분	연번	검색어	검색결과(건)
CII A F.T.I	1	exp presbyopia/	2,524
내상사	2	Presbyop*.tw.	2,328
대상자 종합	3	1 or 2	3,132
	4	Animals/	1,233,150
동물연구제외	5	Humans/	13,628,696
	6	4 not (4 and 5)	945,153
검색종합	7	3 not 6	3,124

3.1.3 Cochrane Controlled Register of Trials (CENTRAL)

(검색일: 2020.12.11)

구분	연번	검색어	검색결과(건)
ΓUΛ ŀ ΤL	1	MeSH descriptor: [Presbyopia] explode all trees	156
대상자	2	Presbyop*	416
대상자 종합	3	#1 or #2	416
검색종합	4	trials	407

3.2 국내데이터 베이스

(검색일: 2020.12.11.)

데이터베이스	연번	검색어	검색결과
KoreaMed	1	(("Presbyop"[ALL])) OR ("Presbyopia"[ALL])	45
	1	([ALL=노안] OR [ALL=노년시])	101
한국의학논문데이터베이스 (KMBASE)	2	([ALL=Presbyopia] OR [ALL=Presbyop])	104
(11112) (02)	3	#1 or # 2 (국내발표논문)	121
	1	전체 = Presbyopia or 전체 = Presbyop	39
학술데이터베이스(KISS)	2	전체 = 노안 or 전체 = 노년시	36
	3	#1 or # 2 (학술지, 안과학)	39
	1	전체 : 노안 〈OR〉 전체 : 노년시	330
한국교육학술정보원(RISS)	2	전체 : Presbyopia 〈OR〉 전체 : Presbyop	134
	3	#1 or # 2 (국내학술논문)	366
	1	전체=노안	97
	2	전체="노년시"	7
NDSL	3	전체=Presbyopia	82
	3	전체=Presbyop*	101
	3	#1 or # 2 (국내논문)	280

4. 비뚤림위험 평가 및 자료추출 양식

4.1 비뚤림위험 평가도구(RoB)

연번(Ref ID)		
1저자(출판연도)		
영역	비뚤림위험	사유
Adequate sequence generation (무작위 배정순서 생성)	□ 낮음 □ 높음 □ 불확실	문헌에 정확한 clue(ex. '무작위 배정순서 생성'의 경우에 'randomization'과 관련한 단어는 있지만 무작위 배정이어떤 방법으로 이루어졌는지에 관한 기술이 없어 이과정에서 bias가 생길 위험이 있었는지 판단할 수 없는경우)가 제시되어 있지 않은 경우는 'unclear'로 평가
Allocation concealment (배정순서 은폐)	□ 낮음 □ 높음 □ 불확실	- 낮음: 적절한 방법에 의해 배정순서가 은폐됨으로써 연구자가 배정내용을 알 수 없는 경우 - 높음: 배정순서가 은폐될 수 있는 방법을 사용하지 않았거나 부적절한 방법의 사용에 의해 배정순서가 은폐되지 않은 경우 - 불확실: 배정순서 은폐 방법에 대한 비뚤임 위험이 '낮음', '높음' 중 어디에 해당하는지 불확실한 경우
Blinding of participants and personnel (연구 참여자, 연구자에 대한 눈가림)	□ 낮음 □ 높음 □ 불확실	다음 중 한 가지 이상에 해당되는 경우 -낮음: · 눈가림이 시행되지 않았거나 불완전하나, 눈가림이 (중재)결과에 영향을 미치지 않을 것으로 판단되는 경우 · 눈가림을 채택하여 수행하였고 연구 참여자와 연구자에 대한 눈가림이 깨지지 않았을 것으로 확신되는 경우 -높음: · 연구 참여자와 연구자에 대한 눈가림이 시도되었으나 눈가림이 유지되지 않았을 것으로 판단되고, 눈가림이 결과평가에 영향을 미칠 것으로 판단되고, 눈가림이 (중재)결과에 영향을 미칠 수 있는 경우임에도 눈가림을 시행하지 않았 거나, 눈가림을 시도하였으나 방법이 부적절한 경우 -불확실: · 눈가림에 대한 비뚤임 위험이 '낮음', '높음' 중 어디에 해당하는지 불확실한 경우 · 연구에서 해당 결과를 다루지 않은 경우
Blinding of outcome assessment (결과평가에 대한 눈가림)	□ 낮음 □ 높음 □ 불확실	다음 중 한 가지 이상에 해당되는 경우 -낮음: · 결과평가에 대한 눈가림을 채택하여 수행하였고 결과평가자에 대한 눈가림이 깨지지 않았을 것으로 확신되는 경우 · 눈가림이 시행되지 않았으나, 눈가림이 결과평가에 영향을 미치지 않을 것으로 판단 되는 경우 -높음: · 눈가림이 결과평가에 영향을 미칠 수 있는 경우임에도 눈가림을 시행하지 않은 경우 · 결과평가자에 대한 눈가림이 시도되었으나 눈가림이 유지되지 않았을 것으로 판단 되고, 눈가림이 결과평가에 영향을 미칠 것으로 판단되는 경우 -불확실: · 눈가림에 대한 비뚤임 위험이 '낮음', '높음' 중 어디에

110

연번(Ref ID) 1저자(출판연도)		
영역	비뚤림위험	사유
Incomplete outcome data addressed (불충분한 결과자료)	□ 낮음 □ 불확실	해당하는지 불확실한 경우 · 연구에서 해당 결과를 다루지 않은 경우 다음 중 한 가지 이상에 해당되는 경우 - 낮음: · 결측치가 없는 경우 · 결측치가 없는 경우 · 결측치가 경과에 영향을 미치지 않는 경우(생존분석에서는 결측이 절단값으로 다루어짐) · 결측치가 중재군 간에 유사하게 발생하고 결측치가 발생한 원인도 유사하 원인도 유사하 비추어볼 때 중재효과 추정에 임상적으로 유의한 차이를 낼 것으로 보이지 않는 경우 · 연속형 변수의 경우 결측치 분율이 관찰발생위험을 비추어볼 때 중재효과의 크기 추정에 임상적으로 유의한 경약을 미칠 것으로 보이지 않는 경우 · 전절한 통계적 방법을 사용하여 결측치를 대체한 경우 - 높음: · 상당수의 결측치가 존재하고 결측치의 원인이 실제 결과에 영향을 미칠 수 있는 경우 - 중재군 간의 불균형한 결측치 수 차이 자체 또는 결측이 생긴 이유가 결과에 비뚤임을 초래할 수 있는 경우 · 이분형 변수의 경우 결측치 들은이 결과변수의 관찰발생위험에 비추어 상당 수여서 중재효과 추정에 임상적으로 유의한 차이를 낼 것으로 보이지 않는 경우 · 연속형 변수의 경우, 결측 결과로부터 예견되는 군간 중재효과 차이가 (평균의 차이)를 낼 것으로 보이지 않는 경우 · 연속형 변수의 경우, 결측 결과로부터 예견되는 군간 중재효과 차이가 (평균의 차이 혹은 표준화 평균의 차이)가 효과크기 추정결과에 임상적으로 유의한 비뚤임을 초래 하기에 충분한 경우 · 무작위 배정된 중재를 받지 않은 사람이 상당수 임에도 중재 받은 대로만 분석을 수행하여(per-procotol analysis) 결과자료를 제시한 경우 · 부적절한 방법으로 결측치를 대체한 경우 - 불확실: · 배제/탈락에 대한 보고가 불충분한 경우(예, 무작위수 언급 없음, 결측 이유에 대한 언급 없음) · 연구에서 해당 결과를 다루지 않은 경우
Free of selective reporting (선택적 보고)	□ 낮음 □ 높음 □ 불확실	경우에 'Low'로 평가, 둘 중 하나만 보고한 경우에는 'unclear'로 평가?? => 안전성 및 유효성 결과를 둘다 보고하였는지, 둘중 하나만 보고하였는지 기록해 둘 것
Other bias : Funding (그 외 비뚤림)	□ 낮음 □ 높음 □ 불확실	민간 연구비 지원

4.2 비뚤림위험 평가도구(RoBANS ver 2.0)

연번(Ref ID)		
1저자(출판연도)		
영역	비뚤림위험	사유
대상군 비교 가능성	□ 낮음 □ 높음 □ 불확실	-비교연구인 경우 중재군과 대조군의 주요기저특성에 차이가 없음이 확인 되는 경우에만 낮음으로 판단 (테이블 1의 p 값, 문헌의 기술 확인 등) -중재 전후의 연구 집단이 완전히 동일한 경우 이외에도 before/after의 데이터를 모집한 대상자(코호트)가 동일하다면 이를 시점에 따라 전후연구, 또는 시계열연구로 판단함. 단일군 연구 중 전후 값을 비교하였으면 비교연구인 전후연구로 본다. 전/후의 집단이 동일 집단이라고 가정할 수 있다면 '낮음'으로 판단할 수 있음
대상군 선정	□ 낮음 □ 높음 □ 불확실	-연구 참여자 선택, 배제 기준이 문헌에 정확히 기술되었고 이를 모든 참가자에 동일하게 적용하면 낮음으로 판단 -Inclusion criteria, selection criteria, exclusion 등의 용어를 직접사용하지 않더라도 참여자 선택, 배제 기준이 기술되어 있는지를 확인할 것 -Random sampling을 했다는 단순 기술만으로는 동 항목에 대한 비뚤림위험 판단근거가 충분히 제시되었다고 보기 어려움
교란변수	□ 낮음 □ 높음 □ 불확실	-교란변수에 대하여 매칭, 층화 등을 하여 연구 디자인 때 군 간 비교가능성을 확보한 연구는 낮음으로 판단 가능 -연구 디자인 때 군 간 비교가능성 확보하지 못한 경우는 회귀분석 등 통계적 보정을 수행하여 분석한 경우 낮음으로 판단
노출 측정	 낮음 높음 불확실	-매뉴얼의 가이드라인을 그대로 따르기로 함 -신뢰할 수 있는 검사법 이용 (예, discography 사용해서 SIDT 수행한 경우 '낮음'으로 판단)
평가자의 눈가림	□ 낮음 □ 높음 □ 불확실	-매뉴얼의 기준을 그대로 따르기로 함 (연구자와 결과 평가자의 독립성이 보장되는지, 평가자가 결과 평가에 영향을 미치지 않도록 설계 되었는지에 대한 판단) -평가자의 눈가람에 대한 언급이 없을 경우 '불확실'로 판단 (2014년 보고서 기준)
결과 평가	 낮음 높음 불확실	-매뉴얼의 기준을 그대로 따르기로 함 -신뢰도 및 타당도가 입증된 도구를 사용한 경우(예, VAS 등) '낮음'으로 판단 가능
불완전한 결과자료	 낮음 높음 불확실	-전후 연구의 경우 loss가 10% 이상인 경우 '높음' ?? -비교연구인 경우 군 간 loss 비율의 차이에 따라 판단
선택적 결과 보고	 낮음 높음 불확실	-방법(프로토콜)에서 제시한 결과변수에 대하여 결과에 모두 보고하였는지 확인 (미리 정해진 일차결과 중 하나라도 보고되지 않은 경우 '높음'으로 판단)
그 외 비뚤림	□ 낮음 □ 높음 □ 불확실	민간 연구비 지원

4.3 자료추출 양식 자료추출 양식(EXCEL)

연번(Ref ID)								
1저자(출판연도)	연구설계:							
	• 연구시험명(NCT no.):							
~7EU								
연구특성	 연구국가 							
	• 참여기관:							
	대상자 모집기간: 대상 환자(상세질환분류(기존 굴절이상(정시, 난시, 근시, 원시 등), 선택배제기준)						- 11 - 1 - 2	
				—	. — –		,	
	※ 수술 사유 구분 필요	요: 백내장,	RLE, 노안 -	구분 ? (예	, 설명없(기 IOL 시술자	로만 설명)	
연구대상	※ 과거 굴절이상 교정	형이력						
E1-10	• 연구대상자수(총 /	사람수(안구	·수), 비교군=	수, 중재군	l, 대조군)), 탈락률		
	• 기저특성: 남성(%)), 평균연령	, 양안시술여	부(Y/N)				
	※ 수술 전 기저특성으	로 확인해여	야 하는 변수?	?				
중재법	• 중재군: 렌즈명, 런	<u>!</u> 즈유형?						
비교중재법	• 대조군: 렌즈명, 런	<u>l</u> 즈유형?						
	• 추적관찰기간							
	• 시력(VA): 측정기준(안구, 거리, 교정여부, 측정단위 등)							
추적관찰 및	• 기능: Reading speed, 안경 독립성							
결과변수	 주관적 만족도, QoL 							
	• 안전성: glare, CS							
	결과변수		<u>'</u> (n/N)	НΙπ	고(n/N)	구가	P-value	
연구결과-안전성	2761	- 1,112	. (11/14/	5 年 (11/14/				
	- 이분형 결과변수	=1-1-	7/ /NI					
	결과변수	지됴고	<u>'</u> (n/N)	ПП	고군(n/N)	군간	P-value	
연구결과-유효성	- 연속형 결과변수						,	
			치료군		비교군		군간	
	결과변수	n	n M±SD		n	M±SD	P-value	
73								
결론 funding								
비고								

5. 최종선택문헌 (3차 소위원회)

연번	1저자	제목	서지정보
각막굴	절수술 (17편	()	
1	Jackson	Aspheric wavefront-guided LASIK to treat hyperopic presbyopia: 12-Month results with the visx platform	Journal of refractive surgery. 2011;27:519–29
2	Khalifa	Improving near vision in presbyopic eyes by selective treatment of high-order aberrations	Clinical ophthalmology. 2011;5:1525–30
3	Kohnen	Near visual acuity and patient-reported outcomes in presbyopic patients after bilateral multifocal aspheric LASIK excimer laser surgery	Journal of Cataract & Refractive Surgery. 2020;30:30
4	Xu	A preliminary study on the visual outcomes after LaserACE for presbyopia	Annals of Translational Medicine. 2020;8:1224
5	Liu	One year results of presbyLASIK using hybrid bi-aspheric micro-monovision ablation profile in correction of presbyopia and myopic astigmatism	International Journal of Ophthalmology. 2020;13:371-7
6	Romero	Visual quality after presbyopia correction with excimer laser ablation using micromonovision and modulation of spherical aberration	Journal of Cataract & Refractive Surgery. 2019;45:457–64
7	Taneri	Varifocal Versus Monofocal LASIK in Presbyopic Hyperopic Eyes	Journal of Refractive Surgery. 2019;35:459–66
8	Pajic	A Novel Laser Refractive Surgical Treatment for Presbyopia: Optics–Based Customization for Improved Clinical Outcome	Sensors. 2017;17:13
9	Schlote	Multifocal corneal ablation (Supracor) in hyperopic presbyopia: 1-year results in a cross-sectional study	European Journal of Ophthalmology. 2017;27:438-42.
10	Wang Yin	Surgical treatment of presbyopia with central presbyopic keratomileusis: One-year results	Journal of Cataract & Refractive Surgery. 2016;42:1415–23
11	Zhang	Aspheric Micro-monovision LASIK in Correction of Presbyopia and Myopic Astigmatism: Early Clinical Outcomes in a Chinese Population	Journal of Refractive Surgery. 2016;32:680-5
12	Soler Tomas	Symmetrical Versus Asymmetrical PresbyLASIK: Results After 18 Months and Patient Satisfaction	Cornea. 2015;34:651-7
13	Cosar	Supracor hyperopia and presbyopia correction: 6-month results	European Journal of Ophthalmology. 2014; 24:325-9
14	Ryan	Corneal approach to hyperopic presbyopia treatment: six-month outcomes of a new multifocal excimer laser in situ keratomileusis procedure	Journal of Cataract & Refractive Surgery. 2013;39:1226–33

연번	1저자	제목	서지정보
15	Luger	One-year experience in presbyopia correction with biaspheric multifocal central presbyopia laser in situ keratomileusis	Cornea. 2013;32:644-52
16	Oh	Efficacy of aspheric corneal ablation with the central-saving technique for presbyopic correction through early wound healing modulation	Cornea. 2013:32:30-5
17	Uthoff	A new method of cornea modulation with excimer laser for simultaneous correction of presbyopia and ametropia	Graefes Archive for Clinical & Experimental Ophthalmology. 2012;250:1649–61
IOL (3	89편)		
1	Kretz	Visual Outcomes, Patient Satisfaction and Spectacle Independence with a Trifocal Diffractive Intraocular Lens	Korean J Ophthalmol. 2016;30:180-91
2	곽준영	비구면 다초점 인공수정체를 삽입한 백내장 수술안의 시각 및 광학적 단기 임상 결과	J Korean Ophthalmol Soc. 2012;53:396-402
3	최문정	Visual Outcomes after Bilateral Implantation of an Extended Depth of Focus Intraocular Lens: A Multicenter Study	Korean Journal of Ophthalmology. 2020;34:439–45
4	Kretz(b)	Clinical Evaluation of Functional Vision of +1.5 Diopters near Addition, Aspheric, Rotational Asymmetric Multifocal Intraocular Lens	Korean Journal of Ophthalmology. 2016;30:382-9
5	권영기	양안에 삽입한 회절성 삼중초점 인공수정체의 6개월 임상 결과	대한안과학회지. 2015;56:1331-7
6	박율리	두 종류의 다초점 비구면 인공수정체 삽입 후 임상 결과의 비교	대한안과학회지. 2013;54:1199-207
7	Alfonso	Outcomes and patient satisfaction after presbyopic bilateral lens exchange with the ResTOR IOL in emmetropic patients	Journal of refractive surgery. 2020;26:927-33
8	Pedrotti	Quality of vision, patient satisfaction and long-term visual function after bilateral implantation of a low addition multifocal intraocular lens	International ophthalmology. 2018;38:1709–16
9	Gunders en	Comparison of visual outcomes after implantation of diffractive Trifocal toric intraocular lens and a diffractive apodized Bifocal toric intraocular lens	Clinical ophthalmology. 2016;10:455–61
10	Monaco	Visual performance after bilateral implantation of 2 new presbyopia–correcting intraocular lenses: Trifocal versus extended range of vision	Journal of Cataract & Refractive Surgery. 2017;43:737–47
11	Alio	Postoperative bilateral reading performance with 4 intraocular lens models: six-month results	Journal of Cataract & Refractive Surgery. 2011;37:842–52
12	Kohnen	Innovative Trifocal (quadrifocal) presbyopia-correcting IOLs: 1-year outcomes from an international multicenter study	Journal of Cataract & Refractive Surgery. 2020;46:1142–48
13	Pedrotti	Comparative analysis of objective and subjective outcomes of two different intraocular lenses: Trifocal and extended range of vision	BMJ Open Ophthalmology. 2020;5:e000497

연번	1저자	제목	서지정보
14	Kohnen (b)	Presbyopia Correction in Astigmatic Eyes Using a Toric Trifocal Intraocular Lens With Quadrifocal Technology	Journal of Refractive Surgery. 2020;36:638-44
15	Alio	Clinical outcomes with a new design in multifocal intraocular lens: a pilot study	Eye and Vision. 2020;7:38
16	Power	Maximising Refractive Outcomes with an Extended Depth of Focus IOL	The Open Ophthalmology Journal. 2018;12:273–80
17	Escando n-Garcia	Through–Focus Vision Performance and Light Disturbances of 3 New Intraocular Lenses for Presbyopia Correction	Journal of ophthalmology. 2018:6165493
18	Friedrich	Intraocular lens multifocality combined with the compensation for corneal spherical aberration: a new concept of presbyopia-correcting intraocular lens	Case Reports in Ophthalmology. 2012;3:375-83
19	Kim	Visual outcomes and safety after bilateral implantation of a Trifocal presbyopia correcting intraocular lens in a Korean population: a prospective single-arm study	BMC Ophthalmology. 2020;20:288
20	Song	Visual outcome and optical quality after implantation of zonal refractive multifocal and extended-range-of-vision IOLs: a prospective comparison	Journal of Cataract & Refractive Surgery. 2020;46:540–8
21	Bohm	Defocus curves of 4 presbyopia-correcting IOL designs: Diffractive panfocal, diffractive Trifocal, segmental refractive, and extended-depth-of-focus	Journal of Cataract & Refractive Surgery. 2019;45:1625–36
22	Levinger	Unilateral Refractive Lens Exchange with a Multifocal Intraocular Lens in Emmetropic Presbyopic Patients	Current Eye Research. 2019;44:726-32
23	Vounotr ypidis	Bifocal nondiffractive intraocular lens for enhanced depth of focus in correcting presbyopia: Clinical evaluation	Journal of Cataract & Refractive Surgery. 2017;43:627-32
24	Chang	Bilateral Implantation of a Single-Piece Bifocal Diffractive Intraocular Lens in Presbyopic Patients: A Prospective Case Series	Asia-Pacific Journal of Ophthalmology. 2019;8:12-21
25	Kretz	Clinical outcomes and surgeon assessment after implantation of a new diffractive multifocal toric intraocular lens	British Journal of Ophthalmology. 2015;99:405–11
26	Venter	Initial experience with a new refractive rotationally asymmetric multifocal intraocular lens	Journal of Refractive Surgery. 2014;30:770-6
27	Mojzis	Outcomes of a new diffractive Trifocal intraocular lens	Journal of Cataract & Refractive Surgery. 2014;40;60–9
28	Tsaousis	Binocularity enhances visual acuity of eyes implanted with multifocal intraocular lenses	Journal of Refractive Surgery. 2013;29:246–50
29	Ferrer- Blasco	Refractive lens exchange with a multifocal diffractive aspheric intraocular lens	Arquivos Brasileiros de Oftalmologia. 2012;75:192-6
30	Altaie	Prospective analysis of visual outcomes using apodized, diffractive multifocal intraocular lenses following phacoemulsification for cataract or clear lens extraction	Clinical & Experimental Ophthalmology. 2012;40:148–50

연번	1저자	제목	서지정보
31	Alfonso	Refractive lens exchange with Acri.LISA Bifocal intraocular lens implantation	European Journal of Ophthalmology. 2011;21:125-31
32	Alfonso (b)	Refractive lens exchange with distance-dominant diffractive Bifocal intraocular lens implantation	Graefes Archive for Clinical & Experimental Ophthalmology. 2010;248:1507-14
33	Alfonso (c)	Refractive lens exchange with the Acri.Twin asymmetric diffractive Bifocal intraocular lens system	European Journal of Ophthalmology. 2010;20:509–16
34	Tan	Clinical outcomes after femtosecond laser assisted cataract surgery with implantation of the tecnis symfony intraocular lens	International Eye Science. 2019;20:509–16
35	Almulhim	Visual outcomes and patient satisfaction after bilateral implantation of a new Trifocal diffractive intraocular lens	Saudi Journal of Ophthalmology. 2018;32:310-7
36	Zamora -De-La -Cruz	Comparison of visual results and quality of vision after bilateral implantation of Trifocal intraocular lenses versus Bifocal intraocular lenses	Revista Mexicana de Oftalmologia. 2018;92:62-9
37	Plaza-P uche	Analysis of defocus curves of different modern multifocal intraocular lenses	European Journal of Ophthalmology. 2016;26:412-7
38	Venter	Outcomes and complications of a multifocal toric intraocular lens with a surface-embedded near section	Journal of Cataract and Refractive Surgery. 2013;39:859–66
39	Van Der Linden	Comparison of a new-generation sectorial addition multifocal intraocular lens and a diffractive apodized multifocal intraocular lens	Journal of Cataract and Refractive Surgery. 2012;38:68–73

발행일 2021. 12. 31.

발행인 한광협

발행처 한국보건의료연구원

이 책은 한국보건의료연구원에 소유권이 있습니다. 한국보건의료연구원의 승인 없이 상업적인 목적으로 사용하거나 판매할 수 없습니다.

978-89-6834-858-7